Validator Tool¶
The Prompt Decorators Validator Tool is a utility for validating decorator definitions, ensuring they conform to the framework's specifications, and helping detect issues before they affect your applications.
Overview¶
The validator tool performs several key functions:
- Schema Validation: Ensures decorator definitions match the expected schema
- Parameter Validation: Verifies parameter types, names, and defaults
- Transform Function Analysis: Checks for syntax errors and potential issues
- Compatibility Checking: Identifies potential conflicts between decorators
- Performance Analysis: Evaluates transform functions for efficiency concerns
Installation¶
The validator tool is included with the prompt-decorators package:
For the command-line interface, install with the CLI extras:
Using the Validator CLI¶
The validator can be used from the command line:
# Validate a single decorator JSON file
prompt-decorators validate my_decorator.json
# Validate all decorators in a directory
prompt-decorators validate --directory path/to/decorators
Using the prompt_validator.py Script¶
For direct validation without installing the CLI, you can use the prompt_validator.py
script:
# Validate decorator syntax in a prompt
python scripts/prompt_validator.py syntax -t "+++Reasoning(depth=comprehensive)\nExplain quantum computing."
# Validate a decorator schema file
python scripts/prompt_validator.py schema -f registry/core/reasoning/deductive.json
# Validate all files in a directory against registry schema
python scripts/prompt_validator.py directory -d registry/core -s registry
This script provides a unified interface for validating different aspects of prompt decorators, including syntax validation, schema validation, and directory validation.
Validate a decorator defined in Python code¶
prompt-decorators validate --module my_package.decorators
Generate a report¶
prompt-decorators validate --report report.html path/to/decorators
### Available Commands
- `validate`: Validate decorator definitions
- `check-conflicts`: Check for conflicts between decorators
- `analyze`: Analyze transform functions for performance issues
- `verify`: Verify that decorators work with various LLM providers
### Options
- `--directory`, `-d`: Directory containing decorator definitions
- `--recursive`, `-r`: Recursively search directories
- `--module`, `-m`: Python module containing decorator definitions
- `--format`, `-f`: Output format (text, json, html)
- `--report`: Generate a detailed report file
- `--verbose`, `-v`: Show detailed validation information
- `--fix`: Attempt to fix issues automatically
## Using the Validator in Code
You can also use the validator programmatically in your Python code:
```python
from prompt_decorators.tools.validator import (
validate_decorator_definition,
validate_transform_function,
check_decorator_conflicts
)
# Validate a decorator definition
from prompt_decorators import DecoratorDefinition
my_decorator = DecoratorDefinition(
name="MyDecorator",
description="A sample decorator",
category="Custom",
parameters=[
{
"name": "param1",
"type": "string",
"description": "A parameter",
"default": "default value"
}
],
transform_function="return 'Modified: ' + text;"
)
# Validate against schema
validation_result = validate_decorator_definition(my_decorator)
if validation_result.is_valid:
print("Decorator is valid!")
else:
print(f"Validation errors: {validation_result.errors}")
# Validate transform function specifically
transform_result = validate_transform_function(my_decorator.transform_function)
if transform_result.is_valid:
print("Transform function is valid!")
else:
print(f"Transform function errors: {transform_result.errors}")
# Check for conflicts with existing decorators
conflicts = check_decorator_conflicts(my_decorator)
if conflicts:
print(f"Potential conflicts with: {', '.join(conflicts)}")
Validation Checks¶
The validator performs these checks:
Schema Validation¶
- Ensures required fields are present (name, description, etc.)
- Validates structure conforms to the JSON schema
- Checks field types and formats
Parameter Validation¶
- Verifies parameter names are unique
- Ensures enum parameters have valid options
- Checks default values match parameter types
- Validates parameter descriptions
Transform Function Analysis¶
- Checks JavaScript syntax
- Verifies all parameters are used correctly
- Ensures function returns a string value
- Warns about potential security issues
Compatibility Analysis¶
- Identifies conflicting parameter names
- Detects overlapping functionality
- Warns about parameters with similar names but different types
Creating a Custom Validator¶
You can extend the validator for your specific needs:
from prompt_decorators.tools.validator import DecoratorValidator, ValidationRule
# Create a custom validation rule
class CustomParameterRule(ValidationRule):
"""Rule that requires parameters to follow a naming convention."""
def validate(self, decorator_def):
"""Check that all parameters follow snake_case convention."""
issues = []
for param in decorator_def.parameters:
name = param.get("name", "")
if not name.islower() or " " in name:
issues.append(f"Parameter '{name}' should use snake_case")
return issues
# Create a custom validator with your rule
class CustomValidator(DecoratorValidator):
def __init__(self):
super().__init__()
self.add_rule(CustomParameterRule())
# Use your custom validator
validator = CustomValidator()
result = validator.validate(my_decorator)
Continuous Integration¶
The validator tool can be integrated into your CI/CD pipeline:
# GitHub Actions example
name: Validate Decorators
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.11'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install prompt-decorators[cli]
- name: Validate decorators
run: |
prompt-decorators validate --directory ./decorators --report validation-report.html
- name: Upload validation report
uses: actions/upload-artifact@v2
with:
name: validation-report
path: validation-report.html
Common Validation Issues and Solutions¶
Issue: Missing Required Fields¶
Solution: Add the missing field to your decorator definition.
Issue: Invalid Parameter Type¶
Solution: Change the parameter type to one of the supported types. Use "type": "number"
instead of "type": "integer"
.
Issue: Transform Function Syntax Error¶
Solution: Fix the JavaScript syntax in your transform function. Make sure you're using valid JavaScript.
Issue: Missing Parameter in Transform Function¶
Solution: Either use the parameter in your transform function or remove it from the parameter definitions.
Issue: Potential Security Issue¶
Solution: Avoid using eval
or other unsafe JavaScript constructs in your transform functions.
Performance Optimization¶
The validator can help identify performance issues in your decorators:
This will analyze your transform functions for performance issues such as:
- Inefficient string concatenations
- Complex loops or recursion
- Excessive memory usage
- Potential performance bottlenecks
Best Practices¶
- Validate Early and Often: Run validation during development, not just before release
- Automate Validation: Include validation in your CI/CD pipeline
- Fix All Errors: Resolve all validation errors before using decorators in production
- Review Warnings: Warnings may indicate future problems
- Use Reports: Generate and review comprehensive validation reports
Related Tools¶
- Schema Generator: Generate JSON schema files for your decorators
- Documentation Generator: Create documentation from decorator definitions
- Test Generator: Generate test cases for your decorators
Next Steps¶
- Learn how to create your own decorators
- Explore custom decorators in the tutorials
- Check out the decorator specification