Skip to content

Validator Tool

The Prompt Decorators Validator Tool is a utility for validating decorator definitions, ensuring they conform to the framework's specifications, and helping detect issues before they affect your applications.

Overview

The validator tool performs several key functions:

  1. Schema Validation: Ensures decorator definitions match the expected schema
  2. Parameter Validation: Verifies parameter types, names, and defaults
  3. Transform Function Analysis: Checks for syntax errors and potential issues
  4. Compatibility Checking: Identifies potential conflicts between decorators
  5. Performance Analysis: Evaluates transform functions for efficiency concerns

Installation

The validator tool is included with the prompt-decorators package:

pip install prompt-decorators

For the command-line interface, install with the CLI extras:

pip install "prompt-decorators[cli]"

Using the Validator CLI

The validator can be used from the command line:

# Validate a single decorator JSON file
prompt-decorators validate my_decorator.json

# Validate all decorators in a directory
prompt-decorators validate --directory path/to/decorators

Using the prompt_validator.py Script

For direct validation without installing the CLI, you can use the prompt_validator.py script:

# Validate decorator syntax in a prompt
python scripts/prompt_validator.py syntax -t "+++Reasoning(depth=comprehensive)\nExplain quantum computing."

# Validate a decorator schema file
python scripts/prompt_validator.py schema -f registry/core/reasoning/deductive.json

# Validate all files in a directory against registry schema
python scripts/prompt_validator.py directory -d registry/core -s registry

This script provides a unified interface for validating different aspects of prompt decorators, including syntax validation, schema validation, and directory validation.

# Get help on available commands
python scripts/prompt_validator.py --help

Validate a decorator defined in Python code

prompt-decorators validate --module my_package.decorators

Generate a report

prompt-decorators validate --report report.html path/to/decorators

### Available Commands

- `validate`: Validate decorator definitions
- `check-conflicts`: Check for conflicts between decorators
- `analyze`: Analyze transform functions for performance issues
- `verify`: Verify that decorators work with various LLM providers

### Options

- `--directory`, `-d`: Directory containing decorator definitions
- `--recursive`, `-r`: Recursively search directories
- `--module`, `-m`: Python module containing decorator definitions
- `--format`, `-f`: Output format (text, json, html)
- `--report`: Generate a detailed report file
- `--verbose`, `-v`: Show detailed validation information
- `--fix`: Attempt to fix issues automatically

## Using the Validator in Code

You can also use the validator programmatically in your Python code:

```python
from prompt_decorators.tools.validator import (
    validate_decorator_definition,
    validate_transform_function,
    check_decorator_conflicts
)

# Validate a decorator definition
from prompt_decorators import DecoratorDefinition

my_decorator = DecoratorDefinition(
    name="MyDecorator",
    description="A sample decorator",
    category="Custom",
    parameters=[
        {
            "name": "param1",
            "type": "string",
            "description": "A parameter",
            "default": "default value"
        }
    ],
    transform_function="return 'Modified: ' + text;"
)

# Validate against schema
validation_result = validate_decorator_definition(my_decorator)
if validation_result.is_valid:
    print("Decorator is valid!")
else:
    print(f"Validation errors: {validation_result.errors}")

# Validate transform function specifically
transform_result = validate_transform_function(my_decorator.transform_function)
if transform_result.is_valid:
    print("Transform function is valid!")
else:
    print(f"Transform function errors: {transform_result.errors}")

# Check for conflicts with existing decorators
conflicts = check_decorator_conflicts(my_decorator)
if conflicts:
    print(f"Potential conflicts with: {', '.join(conflicts)}")

Validation Checks

The validator performs these checks:

Schema Validation

  • Ensures required fields are present (name, description, etc.)
  • Validates structure conforms to the JSON schema
  • Checks field types and formats

Parameter Validation

  • Verifies parameter names are unique
  • Ensures enum parameters have valid options
  • Checks default values match parameter types
  • Validates parameter descriptions

Transform Function Analysis

  • Checks JavaScript syntax
  • Verifies all parameters are used correctly
  • Ensures function returns a string value
  • Warns about potential security issues

Compatibility Analysis

  • Identifies conflicting parameter names
  • Detects overlapping functionality
  • Warns about parameters with similar names but different types

Creating a Custom Validator

You can extend the validator for your specific needs:

from prompt_decorators.tools.validator import DecoratorValidator, ValidationRule

# Create a custom validation rule
class CustomParameterRule(ValidationRule):
    """Rule that requires parameters to follow a naming convention."""

    def validate(self, decorator_def):
        """Check that all parameters follow snake_case convention."""
        issues = []

        for param in decorator_def.parameters:
            name = param.get("name", "")
            if not name.islower() or " " in name:
                issues.append(f"Parameter '{name}' should use snake_case")

        return issues

# Create a custom validator with your rule
class CustomValidator(DecoratorValidator):
    def __init__(self):
        super().__init__()
        self.add_rule(CustomParameterRule())

# Use your custom validator
validator = CustomValidator()
result = validator.validate(my_decorator)

Continuous Integration

The validator tool can be integrated into your CI/CD pipeline:

# GitHub Actions example
name: Validate Decorators

on:
  push:
    branches: [ main ]
  pull_request:
    branches: [ main ]

jobs:
  validate:
    runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: '3.11'
    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        pip install prompt-decorators[cli]
    - name: Validate decorators
      run: |
        prompt-decorators validate --directory ./decorators --report validation-report.html
    - name: Upload validation report
      uses: actions/upload-artifact@v2
      with:
        name: validation-report
        path: validation-report.html

Common Validation Issues and Solutions

Issue: Missing Required Fields

Error: Missing required field 'description' in decorator 'MyDecorator'

Solution: Add the missing field to your decorator definition.

Issue: Invalid Parameter Type

Error: Parameter 'count' has invalid type 'integer'. Valid types are: string, number, boolean, enum

Solution: Change the parameter type to one of the supported types. Use "type": "number" instead of "type": "integer".

Issue: Transform Function Syntax Error

Error: Syntax error in transform function: Unexpected token 'return'

Solution: Fix the JavaScript syntax in your transform function. Make sure you're using valid JavaScript.

Issue: Missing Parameter in Transform Function

Warning: Parameter 'format' is defined but not used in the transform function

Solution: Either use the parameter in your transform function or remove it from the parameter definitions.

Issue: Potential Security Issue

Warning: Transform function uses 'eval', which can be a security risk

Solution: Avoid using eval or other unsafe JavaScript constructs in your transform functions.

Performance Optimization

The validator can help identify performance issues in your decorators:

prompt-decorators analyze --performance my_decorator.json

This will analyze your transform functions for performance issues such as:

  • Inefficient string concatenations
  • Complex loops or recursion
  • Excessive memory usage
  • Potential performance bottlenecks

Best Practices

  1. Validate Early and Often: Run validation during development, not just before release
  2. Automate Validation: Include validation in your CI/CD pipeline
  3. Fix All Errors: Resolve all validation errors before using decorators in production
  4. Review Warnings: Warnings may indicate future problems
  5. Use Reports: Generate and review comprehensive validation reports
  • Schema Generator: Generate JSON schema files for your decorators
  • Documentation Generator: Create documentation from decorator definitions
  • Test Generator: Generate test cases for your decorators

Next Steps