Tutorial: Combining Decorators¶
This tutorial will guide you through the process of combining multiple decorators to create sophisticated prompt transformations. By stacking decorators, you can achieve complex behaviors that would be difficult to implement with a single decorator.
Prerequisites¶
Before starting this tutorial, ensure you have:
- Installed the Prompt Decorators package (
pip install prompt-decorators
) - Completed the Creating Custom Decorators tutorial
- Familiarity with the core concepts of the framework
Why Combine Decorators?¶
Combining decorators allows you to:
- Apply multiple enhancements to a single prompt
- Create modular transformations that can be mixed and matched
- Separate concerns, making each decorator focused on a specific task
- Build complex behaviors from simple building blocks
Methods for Combining Decorators¶
There are three main ways to combine decorators:
- Inline stacking: Using multiple decorator annotations in your prompt text
- Programmatic chaining: Applying decorators in sequence in your code
- Composite decorators: Creating new decorators that internally use other decorators
Let's explore each approach.
1. Inline Stacking¶
The simplest way to combine decorators is by stacking them in your prompt using the inline syntax:
from prompt_decorators import apply_dynamic_decorators
# Create a prompt with multiple stacked decorators
prompt = """
+++Persona(role="data scientist")
+++Reasoning(depth="comprehensive")
+++OutputFormat(format="markdown")
Analyze this dataset and identify key trends:
[dataset description...]
"""
# Apply all decorators at once
transformed_prompt = apply_dynamic_decorators(prompt)
When using inline stacking: - Decorators are applied in order, from top to bottom - Each decorator transforms the text that results from previous decorators - Later decorators can modify or override effects of earlier ones
Example: Technical Analysis with Multiple Decorators¶
Here's an example that combines decorators for a technical analysis:
from prompt_decorators import apply_dynamic_decorators
import openai
# Multi-decorator prompt for technical analysis
prompt = """
+++Persona(role="data scientist")
+++Reasoning(depth="comprehensive")
+++StepByStep(numbered=true)
+++OutputFormat(format="markdown")
+++Audience(level="technical")
Analyze the following dataset of customer churn and identify the key factors that predict churn:
Customer ID, Age, Tenure (months), Monthly Contract, Services Subscribed, Monthly Charges, Churn
1, 42, 24, Yes, Internet+Phone, 89.90, No
2, 27, 3, No, Internet only, 45.50, Yes
3, 35, 18, Yes, Full package, 120.30, No
4, 51, 36, Yes, Internet+TV, 95.75, No
5, 23, 1, No, Phone only, 25.10, Yes
...
"""
transformed_prompt = apply_dynamic_decorators(prompt)
# Send to an LLM
openai.api_key = "your-api-key-here"
response = openai.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": transformed_prompt}],
temperature=0.7
)
The resulting transformation applies multiple effects: 1. Adopts the persona of a data scientist 2. Provides comprehensive reasoning 3. Structures the response as numbered steps 4. Formats the output in markdown 5. Targets a technical audience
2. Programmatic Chaining¶
You can also chain decorators programmatically in your code:
from prompt_decorators import create_decorator_instance
# Create individual decorator instances
persona = create_decorator_instance("Persona", role="teacher")
step_by_step = create_decorator_instance("StepByStep", numbered=True)
audience = create_decorator_instance("Audience", level="beginner")
# Original prompt
original_prompt = "Explain how photosynthesis works."
# Apply decorators in sequence (order matters!)
transformed_prompt = persona(step_by_step(audience(original_prompt)))
# The order is: audience -> step_by_step -> persona
When using programmatic chaining: - You have more control over the order of application - You can conditionally apply decorators based on runtime conditions - You can reuse decorator instances across multiple prompts
Example: Conditional Decorator Application¶
Here's an example that applies decorators conditionally:
from prompt_decorators import create_decorator_instance
def generate_educational_content(topic, audience_level, include_steps=True, use_markdown=False):
"""Generate educational content with appropriate decorators."""
prompt = f"Explain {topic}."
# Start with audience adaptation
audience = create_decorator_instance("Audience", level=audience_level)
prompt = audience(prompt)
# Add steps if requested
if include_steps:
step_by_step = create_decorator_instance("StepByStep", numbered=True)
prompt = step_by_step(prompt)
# Add markdown formatting if requested
if use_markdown:
output_format = create_decorator_instance("OutputFormat", format="markdown")
prompt = output_format(prompt)
# Always add a suitable persona for educational content
if audience_level in ["beginner", "intermediate"]:
persona = create_decorator_instance("Persona", role="teacher")
else:
persona = create_decorator_instance("Persona", role="professor")
prompt = persona(prompt)
return prompt
# Example usage
beginner_content = generate_educational_content(
"photosynthesis",
audience_level="beginner",
include_steps=True
)
expert_content = generate_educational_content(
"quantum computing",
audience_level="expert",
include_steps=False,
use_markdown=True
)
3. Composite Decorators¶
For reusable combinations of decorators, you can create composite decorators that encapsulate multiple transformations. Here's how to implement one in Python:
from prompt_decorators import DecoratorDefinition, register_decorator, create_decorator_instance
def technical_tutorial_transform(text, format="markdown", examples=True):
"""
Transform function for the TechnicalTutorial decorator.
Args:
text (str): The original prompt text
format (str): Output format
examples (bool): Whether to include examples
Returns:
str: The transformed prompt text
"""
# Create instances of the component decorators
persona = create_decorator_instance('Persona', role='senior developer')
steps = create_decorator_instance('StepByStep', numbered=True)
audience = create_decorator_instance('Audience', level='technical')
output_format = create_decorator_instance('OutputFormat', format=format)
# Apply decorators in sequence
result = persona(steps(audience(text)))
result = output_format(result)
# Add examples instruction if needed
if examples:
result = "Please include practical code examples for each step.\n\n" + result
return result
# Define the composite decorator
technical_tutorial = DecoratorDefinition(
name="TechnicalTutorial",
description="Creates a technical tutorial with steps, reasoning, and technical details",
category="Composite",
parameters=[
{
"name": "format",
"type": "enum",
"description": "Output format",
"enum": ["markdown", "plaintext"],
"default": "markdown"
},
{
"name": "examples",
"type": "boolean",
"description": "Include examples",
"default": True
}
],
transform_function=technical_tutorial_transform
)
# Register the composite decorator
register_decorator(technical_tutorial)
# Use the composite decorator
tutorial = create_decorator_instance("TechnicalTutorial", format="markdown", examples=True)
transformed = tutorial("Explain how to implement a binary search algorithm.")
When creating composite decorators: - You encapsulate complexity behind a simpler interface - You ensure consistent application of multiple decorators - You can provide parameters that control the internal decorators
4. Decorator Composition with Classes¶
If you prefer a more object-oriented approach, you can create a class-based composite decorator:
from prompt_decorators import DecoratorBase, register_decorator
class CompositeTutorialDecorator(DecoratorBase):
"""A class-based composite decorator for generating tutorials."""
def __init__(self, format="markdown", examples=True, audience="technical"):
"""Initialize the composite decorator."""
super().__init__()
self.format = format
self.examples = examples
self.audience = audience
def transform(self, text):
"""Apply multiple transformations in sequence."""
from prompt_decorators import create_decorator_instance
# Create instances of component decorators
persona = create_decorator_instance('Persona', role='senior developer')
steps = create_decorator_instance('StepByStep', numbered=True)
audience = create_decorator_instance('Audience', level=self.audience)
output_format = create_decorator_instance('OutputFormat', format=self.format)
# Apply the transformations in sequence
result = persona(steps(audience(text)))
result = output_format(result)
# Add examples instruction if needed
if self.examples:
result = "Please include practical code examples for each step.\n\n" + result
return result
# Register the composite class decorator
register_decorator(CompositeTutorialDecorator,
name="ClassTutorial",
description="Class-based tutorial decorator",
category="Composite")
Conclusion¶
In this tutorial, you've learned how to:
- Combine decorators using inline stacking in the prompt
- Chain decorators programmatically in your code
- Create composite decorators that encapsulate multiple transformations
- Implement class-based composite decorators
By combining decorators, you can create powerful, flexible prompt transformations that would be difficult to achieve with a single decorator. This modular approach allows you to build complex behaviors from simple, reusable components.
Next Steps¶
- Experiment with different combinations of decorators
- Create domain-specific composite decorators for your use cases
- Develop an extension with multiple related decorators (see the Extension Development tutorial)
- Contribute your most useful decorator combinations to the community