Quick Start¶
This guide will help you get started with Prompt Decorators quickly, showing the most common usage patterns.
Basic Usage¶
1. Import the Package¶
2. Using Inline Decorator Syntax¶
The simplest way to use prompt decorators is with the inline syntax directly in your prompts:
# Create a prompt with decorators using inline syntax
prompt = """
+++StepByStep(numbered=true)
Explain how photosynthesis works.
"""
# Apply the decorators to transform the prompt
transformed_prompt = apply_dynamic_decorators(prompt)
# Send the transformed prompt to any LLM
# response = your_llm_function(transformed_prompt)
print(transformed_prompt)
3. Using Decorator Instances¶
You can also create and use decorator instances programmatically:
# Create a decorator instance
step_by_step = create_decorator_instance("StepByStep", numbered=True)
# Apply the decorator to a prompt
original_prompt = "Explain how photosynthesis works."
transformed_prompt = step_by_step(original_prompt)
# Send to your LLM
# response = your_llm_function(transformed_prompt)
print(transformed_prompt)
4. Combining Multiple Decorators¶
You can stack multiple decorators either inline or programmatically:
# Inline stacking
prompt = """
+++Persona(role="scientist")
+++StepByStep(numbered=true)
+++Audience(level="beginner")
Explain how photosynthesis works.
"""
transformed_prompt = apply_dynamic_decorators(prompt)
# Or programmatically
persona = create_decorator_instance("Persona", role="scientist")
step_by_step = create_decorator_instance("StepByStep", numbered=True)
audience = create_decorator_instance("Audience", level="beginner")
original_prompt = "Explain how photosynthesis works."
transformed_prompt = persona(step_by_step(audience(original_prompt)))
Working with Decorators¶
Listing Available Decorators¶
You can list all available decorators:
from prompt_decorators import get_available_decorators
decorators = get_available_decorators()
for decorator in decorators:
print(f"{decorator.name}: {decorator.description}")
Getting Decorator Details¶
To get detailed information about a specific decorator:
# Find a specific decorator by name
decorators = get_available_decorators()
reasoning_decorator = next((d for d in decorators if d.name == "Reasoning"), None)
if reasoning_decorator:
print(f"Name: {reasoning_decorator.name}")
print(f"Description: {reasoning_decorator.description}")
print(f"Category: {reasoning_decorator.category}")
print("Parameters:")
for param in reasoning_decorator.parameters:
print(f" - {param.name}: {param.description}")
if hasattr(param, 'default'):
print(f" Default: {param.default}")
Validating Decorator Syntax¶
You can validate decorator syntax using the validation tools:
# Validate decorator syntax in a prompt
python scripts/prompt_validator.py syntax -t "+++Reasoning(depth=comprehensive)\nExplain quantum computing."
# Validate a decorator schema file
python scripts/prompt_validator.py schema -f registry/core/reasoning/deductive.json
# Validate all files in a directory
python scripts/prompt_validator.py directory -d registry/core -s registry
You can also validate syntax programmatically:
from prompt_decorators.core.dynamic_decorator import extract_decorators
# Extract and validate decorators from a prompt
prompt = """
+++Reasoning(depth=comprehensive)
+++StepByStep(numbered=true)
Explain quantum computing.
"""
decorators, cleaned_text = extract_decorators(prompt)
for decorator in decorators:
print(f"Found decorator: {decorator.name} with parameters: {decorator.parameters}")
Integration with LLM Providers¶
Using with OpenAI¶
import openai
from prompt_decorators import apply_dynamic_decorators
# Set up OpenAI API key
openai.api_key = "your-api-key-here"
# Create and transform a prompt
prompt = """
+++StepByStep(numbered=true)
+++Audience(level="beginner")
Explain quantum computing.
"""
transformed_prompt = apply_dynamic_decorators(prompt)
# Send to OpenAI
response = openai.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": transformed_prompt}
],
temperature=0.7,
max_tokens=1000
)
# Print the response
print(response.choices[0].message.content)
Using with Anthropic Claude¶
import anthropic
from prompt_decorators import apply_dynamic_decorators
# Set up Anthropic client
client = anthropic.Anthropic(api_key="your-anthropic-api-key")
# Create and transform a prompt
prompt = """
+++StepByStep(numbered=true)
+++Persona(role="teacher")
Explain the water cycle.
"""
transformed_prompt = apply_dynamic_decorators(prompt)
# Send to Anthropic Claude
message = client.messages.create(
model="claude-3-opus-20240229",
max_tokens=1000,
temperature=0.7,
messages=[
{"role": "user", "content": transformed_prompt}
]
)
# Print the response
print(message.content[0].text)
MCP Integration¶
Prompt Decorators integrates with the Model Context Protocol (MCP) to provide decoration functionality to any MCP-compatible client:
# Run the MCP server (general use)
python -m prompt_decorators.integrations.mcp
# For Claude Desktop integration
python -m prompt_decorators.integrations.mcp.claude_desktop
For detailed MCP integration instructions, see the MCP Integration Guide.
Creating Custom Decorators¶
You can create your own decorators:
from prompt_decorators import (
DecoratorDefinition,
register_decorator,
create_decorator_instance
)
# Define a custom decorator
my_decorator_def = DecoratorDefinition(
name="MyCustomDecorator",
description="A custom decorator that adds a prefix and suffix",
category="Custom",
parameters=[
{"name": "prefix", "type": "string", "description": "Text to add before", "default": "START: "},
{"name": "suffix", "type": "string", "description": "Text to add after", "default": " :END"}
],
transform_function="return prefix + text + suffix;"
)
# Register it for use
register_decorator(my_decorator_def)
# Use your custom decorator
my_decorator = create_decorator_instance("MyCustomDecorator", prefix="BEGINNING: ", suffix=" :COMPLETE")
result = my_decorator("This is my text")
print(result) # Output: "BEGINNING: This is my text :COMPLETE"
For more examples of how to create custom decorators, see the Creating Custom Decorators Tutorial.
Next Steps¶
- Explore Core Concepts to understand the design principles behind the framework
- Learn about Creating Decorators to build your own custom decorators
- Check out the Tutorials for step-by-step examples
- See the MCP Integration for using decorators with Claude and other LLMs