MCP Server¶
The Prompt Decorators MCP server exposes prompt decorators as MCP tools, allowing any MCP-compatible client to access and use them. This document provides detailed information about the server implementation and usage.
Implementation Overview¶
The MCP server is implemented using the official MCP SDK, specifically the FastMCP
class, which provides a high-level API for creating MCP servers.
The server exposes four tools:
list_decorators
: Lists all available prompt decorators.get_decorator_details
: Retrieves detailed information about a specific decorator.apply_decorators
: Applies decorators to a prompt using the +++ syntax.create_decorated_prompt
: Creates a decorated prompt using a predefined template.
Source Code¶
The main server implementation is in the prompt_decorators/integrations/mcp/server.py
file. It uses the dynamic decorator module to load and apply decorators.
from mcp.server.fastmcp import FastMCP
from prompt_decorators.dynamic_decorators_module import (
get_available_decorators,
apply_dynamic_decorators,
load_decorator_definitions,
)
# Create the MCP server
mcp = FastMCP("Prompt Decorators")
@mcp.tool()
def list_decorators() -> Dict[str, Any]:
"""Lists all available prompt decorators."""
# Implementation...
@mcp.tool()
def get_decorator_details(name: str) -> Dict[str, Any]:
"""Get detailed information about a specific decorator."""
# Implementation...
@mcp.tool()
def apply_decorators(prompt: str, decorators: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Apply decorators to a prompt using the +++ syntax."""
# Implementation...
@mcp.tool()
def create_decorated_prompt(template_name: str, content: str, parameters: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Create a decorated prompt using a predefined template."""
# Implementation...
def run_server(host: str = "0.0.0.0", port: int = 5000) -> None:
"""Run the MCP server."""
# Implementation...
Running the Server¶
You can run the MCP server using the following command:
Options: - --verbose
: Enable verbose logging for debugging - --host
: Specify the host to bind to (default: "0.0.0.0") - --port
: Specify the port to listen on (default: 5000)
Tool Details¶
list_decorators¶
Lists all available prompt decorators.
Parameters: None
Returns: A dictionary containing information about all available decorators, including their names, descriptions, categories, and parameters.
Example Response:
{
"decorators": {
"Academic": {
"name": "Academic",
"description": "Apply academic writing style and tone",
"category": "Style",
"parameters": [{"name": "level", "description": "Academic level", "type": "string", "required": false}]
},
"Reasoning": {
"name": "Reasoning",
"description": "Enhance reasoning capabilities",
"category": "Critical Thinking",
"parameters": [{"name": "depth", "description": "Reasoning depth", "type": "string", "required": false}]
}
// ... more decorators
}
}
get_decorator_details¶
Retrieves detailed information about a specific decorator.
Parameters: - name
(string, required): The name of the decorator to get details for.
Returns: A dictionary containing detailed information about the decorator, including its name, description, category, parameters, and version.
Example Request:
Example Response:
{
"name": "StepByStep",
"description": "Break down the response into step-by-step instructions",
"category": "Structure",
"parameters": [
{"name": "numbered", "description": "Use numbered steps", "type": "boolean", "required": false}
],
"version": "1.0.0"
}
apply_decorators¶
Applies decorators to a prompt using the +++ syntax.
Parameters: - prompt
(string, required): The prompt text to decorate. - decorators
(array, required): List of decorators to apply, each with name and parameters.
Returns: A dictionary containing the original prompt, the decorated prompt, and the list of applied decorators.
Example Request:
{
"prompt": "Explain quantum computing",
"decorators": [
{"name": "StepByStep"},
{"name": "Academic", "parameters": {"level": "advanced"}}
]
}
Example Response:
{
"original_prompt": "Explain quantum computing",
"decorated_prompt": "I'll provide a step-by-step academic explanation of quantum computing at an advanced level...",
"applied_decorators": ["StepByStep", "Academic"]
}
create_decorated_prompt¶
Creates a decorated prompt using a predefined template.
Parameters: - template_name
(string, required): The name of the template to use. - content
(string, required): The content to include in the prompt. - parameters
(object, optional): Optional parameters for customizing the template.
Returns: A dictionary containing the template name, description, original content, decorated prompt, and applied decorators.
Example Request:
{
"template_name": "detailed-reasoning",
"content": "Why is the sky blue?",
"parameters": {
"depth": "comprehensive"
}
}
Example Response:
{
"template_name": "detailed-reasoning",
"template_description": "Enhanced critical thinking template with structured reasoning",
"original_content": "Why is the sky blue?",
"decorated_prompt": "I'll analyze why the sky appears blue, using detailed reasoning and a comprehensive approach...",
"applied_decorators": [
{"name": "SystemMessage", "parameters": {"message": "Analyze this problem step-by-step with detailed reasoning."}},
{"name": "Reasoning", "parameters": {"depth": "comprehensive"}},
{"name": "Structured", "parameters": {"format": "markdown"}}
]
}
Predefined Templates¶
The server includes the following predefined templates:
detailed-reasoning¶
Enhanced critical thinking template with structured reasoning.
Decorators: - SystemMessage
: Sets the system message to guide detailed reasoning. - Reasoning
: Applies deep reasoning capabilities. - Structured
: Formats the response in Markdown.
academic-analysis¶
Academic style analysis with citations and formal tone.
Decorators: - Academic
: Sets advanced academic level. - Citation
: Uses APA citation style. - Formal
: Applies formal tone.
explain-simply¶
Simplify complex topics for broader understanding.
Decorators: - SystemMessage
: Sets the system message for simple explanations. - Simplify
: Sets beginner-level explanations. - Examples
: Includes examples to illustrate concepts.
creative-storytelling¶
Creative writing with storytelling elements.
Decorators: - Creative
: Uses narrative style for creative content. - Engaging
: Makes the content engaging. - Vivid
: Adds high-level of vividness to descriptions.
problem-solving¶
Structured approach to solving problems.
Decorators: - SystemMessage
: Sets the system message for problem-solving. - ProblemSolver
: Applies problem-solving methodology. - StepByStep
: Breaks down the solution into steps.
Error Handling¶
The server includes robust error handling for various scenarios:
- Invalid decorator names: Returns an error with available decorators.
- Invalid template names: Returns an error with available templates.
- Server initialization issues: Logs detailed error information.
- Runtime errors: Logs exceptions and returns error messages.
Implementation Details¶
Server Lifecycle¶
The server lifecycle is managed by the run_server
function, which:
- Configures logging based on the verbose flag.
- Loads all available decorators from the dynamic decorators module.
- Starts the MCP server using the
mcp.run()
method. - Handles shutdown requests and exceptions.
Tool Implementation¶
Each tool is implemented as a Python function decorated with @mcp.tool()
. The function signature defines the parameters and return type of the tool.
Dynamic Decorator Loading¶
The server uses the get_available_decorators()
function from the dynamic decorators module to load all available decorators at runtime. This ensures that all decorators registered with the system are available to MCP clients.
Template Management¶
Templates are defined as dictionaries with a description and a list of decorators to apply. Each decorator includes its name and parameters.
Extending the Server¶
You can extend the server by adding new tools or templates:
Adding a New Tool¶
@mcp.tool()
def my_custom_tool(param1: str, param2: int) -> Dict[str, Any]:
"""
Custom tool description.
Args:
param1: Description of param1.
param2: Description of param2.
Returns:
A dictionary with the result.
"""
# Implementation...
return {"result": "..."}
Adding a New Template¶
templates["my-template"] = {
"description": "My custom template description",
"decorators": [
{"name": "Decorator1", "parameters": {"param1": "value1"}},
{"name": "Decorator2", "parameters": {"param2": "value2"}}
]
}
Next Steps¶
To learn more about integrating the MCP server with Claude Desktop, see Claude Desktop Integration.