Development Guide¶
This guide provides comprehensive information for developers working on the Prompt Decorators project. It covers best practices, workflows, and coding standards to ensure consistent, high-quality contributions.
Development Philosophy¶
The Prompt Decorators project follows these core principles:
- Simplicity: Keep the API and implementation as simple as possible
- Extensibility: Design for future extensions and customizations
- Quality: Maintain high-quality code through testing and review
- Documentation: Provide thorough documentation for all components
- User Focus: Prioritize developer experience and ease of use
Development Workflow¶
Feature Development Lifecycle¶
- Planning:
- Create an issue describing the feature
- Discuss design and implementation approaches
-
Define acceptance criteria
-
Implementation:
- Create a new branch (
feature/<feature-name>
) - Implement the feature with tests
-
Update documentation
-
Review:
- Submit a pull request
- Address feedback
-
Update implementation as needed
-
Merge:
- Ensure all checks pass
- Merge into main branch
- Delete feature branch
Bug Fix Workflow¶
- Reporting:
- Create an issue with steps to reproduce
- Include expected vs. actual behavior
-
Add relevant logs or screenshots
-
Analysis:
- Verify the bug
- Identify the root cause
-
Determine the best approach to fix
-
Implementation:
- Create a new branch (
bugfix/<bug-description>
) - Fix the bug and add tests to prevent regression
-
Update documentation if needed
-
Review and Merge:
- Submit a pull request
- Ensure all checks pass
- Merge after approval
Working with Issues¶
- Use descriptive titles and detailed descriptions
- Apply appropriate labels (bug, enhancement, documentation, etc.)
- Link related issues and pull requests
- Use task lists for tracking progress
Pull Request Guidelines¶
- Reference the related issue(s) in the PR description
- Provide a clear summary of changes
- Include screenshots or examples for UI changes
- Add reviewers who are familiar with the affected code
- Respond to feedback promptly
Code Organization¶
Package Structure¶
prompt_decorators/
├── core/ # Core decorator functionality
│ ├── __init__.py
│ ├── base.py # Base decorator classes
│ ├── dynamic_decorator.py # Dynamic decorator implementation
│ └── registry.py # Decorator registry
├── schemas/ # JSON schemas
│ ├── __init__.py
│ ├── decorator_schema.py # Decorator schema definitions
│ └── validation.py # Schema validation utilities
├── utils/ # Utility functions
│ ├── __init__.py
│ ├── string_utils.py # String manipulation utilities
│ └── js_utils.py # JavaScript-related utilities
├── integrations/ # Integration with other systems
│ ├── __init__.py
│ └── mcp/ # Model Context Protocol integration
├── __init__.py # Public API
├── config.py # Configuration
└── dynamic_decorators_module.py # Dynamic decorator implementation
Key Modules and Components¶
Core Module¶
The core
module contains the fundamental decorator classes and functionality:
base.py
: Contains theDecoratorBase
abstract base class that all decorators inherit fromdynamic_decorator.py
: Contains theDynamicDecorator
implementationregistry.py
: Manages the decorator registry
Schema Module¶
The schemas
module handles schema definition and validation:
decorator_schema.py
: Contains theDecoratorSchema
andParameterSchema
classesvalidation.py
: Provides schema validation utilities
Utils Module¶
The utils
module contains utility functions:
string_utils.py
: String manipulation, including decoration extractionjs_utils.py
: JavaScript-related utilities, including transform function evaluation
Integrations Module¶
The integrations
module contains integrations with external systems:
mcp/
: Model Context Protocol integration
Module Responsibilities¶
- Core: Responsible for decorator definition, registration, and application
- Schemas: Responsible for defining and validating decorator schemas
- Utils: Provides utility functions for string manipulation and JavaScript execution
- Integrations: Connects with external systems and tools
Coding Standards¶
Python Style Guidelines¶
- Follow PEP 8 style guidelines
- Use
ruff
for formatting and linting - Maximum line length of 100 characters
- Use 4 spaces for indentation (not tabs)
- Use snake_case for function and variable names
- Use CamelCase for class names
- Use UPPER_CASE for constants
Type Annotations¶
- Use type annotations for all functions and methods
- Use
Optional[T]
for parameters that could beNone
- Use
Union[T1, T2]
for parameters that could be multiple types - Use
Any
only when absolutely necessary - Use generics (
TypeVar
,Generic
) for flexible typing
Example:
from typing import Dict, List, Optional, TypeVar, Generic
T = TypeVar('T')
class Registry(Generic[T]):
def get_item(self, name: str) -> Optional[T]:
"""Get an item from the registry by name."""
# Implementation
Documentation Guidelines¶
Docstrings¶
- Use Google-style docstrings for all classes, methods, and functions
- Include a brief description, parameters, return values, and exceptions
- Add examples for complex functions
- Document all public APIs
Example:
def apply_dynamic_decorators(text: str) -> str:
"""
Apply all dynamic decorators found in the text.
This function extracts decorator annotations from the text, applies
the corresponding transformations, and returns the modified text.
Args:
text: The input text containing decorator annotations.
Returns:
The transformed text with decorators applied and annotations removed.
Raises:
DecoratorNotFoundError: If a referenced decorator is not registered.
Example:
>>> apply_dynamic_decorators("+++StepByStep(numbered=true)\\nExplain quantum computing.")
"Please break down your explanation into numbered steps.\\n\\nExplain quantum computing."
"""
# Implementation
Code Comments¶
- Use comments to explain complex logic or non-obvious design decisions
- Avoid redundant comments that simply restate the code
- Use TODO, FIXME, or NOTE comments for future work
Error Handling¶
- Use custom exception classes for specific error cases
- Provide clear error messages with context
- Handle exceptions at appropriate levels
- Use context managers for resource cleanup
Example:
class DecoratorNotFoundError(Exception):
"""Raised when a referenced decorator is not found in the registry."""
pass
def get_decorator(name: str) -> DecoratorBase:
"""Get a decorator from the registry by name."""
if name not in _registry:
raise DecoratorNotFoundError(f"Decorator '{name}' not found in registry")
return _registry[name]
Testing Guidelines¶
Test Organization¶
- Organize tests to mirror the package structure
- Use descriptive test names that explain what's being tested
- Group related tests in classes
Writing Tests¶
- Use pytest for unit and integration tests
- Write test cases for normal operation, edge cases, and error conditions
- Use fixtures for common setup
- Use parametrized tests for testing multiple inputs
- Aim for high test coverage
Example:
import pytest
from prompt_decorators import apply_dynamic_decorators, register_decorator, DecoratorDefinition
@pytest.fixture
def example_decorator():
"""Fixture that provides a test decorator."""
decorator_def = DecoratorDefinition(
name="Example",
description="Example decorator for testing",
category="Test",
parameters=[
{
"name": "prefix",
"type": "string",
"description": "Text to prepend",
"default": "Prefix: "
}
],
transform_function="return prefix + text;"
)
register_decorator(decorator_def)
return decorator_def
def test_apply_dynamic_decorators(example_decorator):
"""Test that decorators are correctly applied to text."""
# Arrange
prompt = """
+++Example(prefix="Test: ")
This is a test
"""
# Act
result = apply_dynamic_decorators(prompt)
# Assert
assert result.strip() == "Test: This is a test"
Mocking and Test Doubles¶
- Use
unittest.mock
orpytest-mock
for mocking - Create test doubles (mocks, stubs, fakes) for external dependencies
- Use mocking judiciously, preferring integration tests when possible
Performance Considerations¶
- Minimize JavaScript evaluation overhead
- Cache expensive operations when appropriate
- Profile code to identify bottlenecks
- Be mindful of memory usage with large prompts
Working with JavaScript¶
The Prompt Decorators framework uses JavaScript for transform functions. Here are some guidelines:
Writing Transform Functions¶
- Keep transform functions simple and focused
- Avoid complex logic that is difficult to debug
- Use ES6 syntax (template literals, arrow functions, etc.)
- Test with multiple inputs, including edge cases
JavaScript Best Practices¶
- Avoid using
eval
in transform functions - Use template literals for string concatenation
- Handle potential errors (e.g., missing parameters)
- Keep functions pure when possible
Example:
Security Considerations¶
- Validate inputs before executing transform functions
- Sanitize user inputs to prevent injection attacks
- Implement timeout mechanisms for complex transforms
- Avoid exposing sensitive information in transform functions
Working with Decorators¶
Creating Decorators¶
- Choose clear, descriptive names
- Define sensible default parameter values
- Include comprehensive descriptions
- Use appropriate parameter types
- Test with various inputs and combinations
Decorator Categories¶
- Assign decorators to appropriate categories
- Document category-specific behavior
- Consider compatibility between decorators in the same category
Decorator Registry¶
- Register decorators at an appropriate time (import vs. runtime)
- Handle versioning and deprecation appropriately
- Document decorator dependencies
Continuous Integration¶
GitHub Actions¶
We use GitHub Actions for continuous integration:
- Test Workflow: Runs tests on multiple Python versions
- Lint Workflow: Checks code style and typing
- Docs Workflow: Builds and validates documentation
- Release Workflow: Publishes packages to PyPI
Pre-commit Hooks¶
We use pre-commit hooks to ensure code quality:
- ruff: Checks formatting and linting
- mypy: Verifies type annotations
- pytest: Runs tests
- doc8: Validates documentation
Release Process¶
Version Numbering¶
We follow Semantic Versioning:
- MAJOR: Incompatible API changes
- MINOR: Backwards-compatible feature additions
- PATCH: Backwards-compatible bug fixes
Release Checklist¶
- Update version in
pyproject.toml
- Update
CHANGELOG.md
with changes - Create a release commit and tag
- Push to GitHub
- Create a GitHub release
- Build and publish to PyPI
Changelog Maintenance¶
- Organize changes by type (Added, Changed, Deprecated, Removed, Fixed, Security)
- Include contributor acknowledgements
- Link to relevant issues and pull requests
Advanced Development Topics¶
Adding a New Integration¶
- Create a new directory in
prompt_decorators/integrations/
- Implement the integration with clear interfaces
- Add tests in
tests/integrations/
- Document the integration in
docs/integrations/
- Update
README.md
with the new integration
Creating Custom Tools¶
- Define the tool's purpose and interface
- Implement the tool in an appropriate module
- Add tests for the tool
- Document the tool's usage
- Integrate with the main package if appropriate
Performance Optimization¶
- Profile code to identify bottlenecks
- Optimize critical paths
- Add benchmarks to measure improvements
- Document performance considerations
Troubleshooting Development Issues¶
Common Issues¶
Decorator Not Found¶
- Ensure the decorator is registered before use
- Check for typos in the decorator name
- Verify the import order
JavaScript Errors¶
- Check JavaScript syntax in the transform function
- Ensure all variables are defined
- Test the transform function with different inputs
Type Checking Errors¶
- Fix type annotations
- Update signature to match implementation
- Add appropriate type casts
Debugging Strategies¶
- Use logging to trace execution flow
- Add debug prints for complex operations
- Use a debugger for step-by-step execution
- Isolate issues with minimal reproducible examples
Additional Resources¶
- Python Documentation Style Guide
- JavaScript Best Practices
- Effective Pull Request Reviews
- Semantic Versioning
- GitHub Actions Documentation
Next Steps¶
- Explore the core concepts to understand the framework's architecture
- Check the API Reference for detailed reference
- Read the tutorials for practical examples
For detailed API documentation, see the API Reference.