Skip to content

Development Guide

This guide provides comprehensive information for developers working on the Prompt Decorators project. It covers best practices, workflows, and coding standards to ensure consistent, high-quality contributions.

Development Philosophy

The Prompt Decorators project follows these core principles:

  1. Simplicity: Keep the API and implementation as simple as possible
  2. Extensibility: Design for future extensions and customizations
  3. Quality: Maintain high-quality code through testing and review
  4. Documentation: Provide thorough documentation for all components
  5. User Focus: Prioritize developer experience and ease of use

Development Workflow

Feature Development Lifecycle

  1. Planning:
  2. Create an issue describing the feature
  3. Discuss design and implementation approaches
  4. Define acceptance criteria

  5. Implementation:

  6. Create a new branch (feature/<feature-name>)
  7. Implement the feature with tests
  8. Update documentation

  9. Review:

  10. Submit a pull request
  11. Address feedback
  12. Update implementation as needed

  13. Merge:

  14. Ensure all checks pass
  15. Merge into main branch
  16. Delete feature branch

Bug Fix Workflow

  1. Reporting:
  2. Create an issue with steps to reproduce
  3. Include expected vs. actual behavior
  4. Add relevant logs or screenshots

  5. Analysis:

  6. Verify the bug
  7. Identify the root cause
  8. Determine the best approach to fix

  9. Implementation:

  10. Create a new branch (bugfix/<bug-description>)
  11. Fix the bug and add tests to prevent regression
  12. Update documentation if needed

  13. Review and Merge:

  14. Submit a pull request
  15. Ensure all checks pass
  16. Merge after approval

Working with Issues

  • Use descriptive titles and detailed descriptions
  • Apply appropriate labels (bug, enhancement, documentation, etc.)
  • Link related issues and pull requests
  • Use task lists for tracking progress

Pull Request Guidelines

  • Reference the related issue(s) in the PR description
  • Provide a clear summary of changes
  • Include screenshots or examples for UI changes
  • Add reviewers who are familiar with the affected code
  • Respond to feedback promptly

Code Organization

Package Structure

prompt_decorators/
├── core/                   # Core decorator functionality
│   ├── __init__.py
│   ├── base.py             # Base decorator classes
│   ├── dynamic_decorator.py # Dynamic decorator implementation
│   └── registry.py         # Decorator registry
├── schemas/                # JSON schemas
│   ├── __init__.py
│   ├── decorator_schema.py # Decorator schema definitions
│   └── validation.py       # Schema validation utilities
├── utils/                  # Utility functions
│   ├── __init__.py
│   ├── string_utils.py     # String manipulation utilities
│   └── js_utils.py         # JavaScript-related utilities
├── integrations/           # Integration with other systems
│   ├── __init__.py
│   └── mcp/                # Model Context Protocol integration
├── __init__.py             # Public API
├── config.py               # Configuration
└── dynamic_decorators_module.py # Dynamic decorator implementation

Key Modules and Components

Core Module

The core module contains the fundamental decorator classes and functionality:

  • base.py: Contains the DecoratorBase abstract base class that all decorators inherit from
  • dynamic_decorator.py: Contains the DynamicDecorator implementation
  • registry.py: Manages the decorator registry

Schema Module

The schemas module handles schema definition and validation:

  • decorator_schema.py: Contains the DecoratorSchema and ParameterSchema classes
  • validation.py: Provides schema validation utilities

Utils Module

The utils module contains utility functions:

  • string_utils.py: String manipulation, including decoration extraction
  • js_utils.py: JavaScript-related utilities, including transform function evaluation

Integrations Module

The integrations module contains integrations with external systems:

  • mcp/: Model Context Protocol integration

Module Responsibilities

  1. Core: Responsible for decorator definition, registration, and application
  2. Schemas: Responsible for defining and validating decorator schemas
  3. Utils: Provides utility functions for string manipulation and JavaScript execution
  4. Integrations: Connects with external systems and tools

Coding Standards

Python Style Guidelines

  • Follow PEP 8 style guidelines
  • Use ruff for formatting and linting
  • Maximum line length of 100 characters
  • Use 4 spaces for indentation (not tabs)
  • Use snake_case for function and variable names
  • Use CamelCase for class names
  • Use UPPER_CASE for constants

Type Annotations

  • Use type annotations for all functions and methods
  • Use Optional[T] for parameters that could be None
  • Use Union[T1, T2] for parameters that could be multiple types
  • Use Any only when absolutely necessary
  • Use generics (TypeVar, Generic) for flexible typing

Example:

from typing import Dict, List, Optional, TypeVar, Generic

T = TypeVar('T')

class Registry(Generic[T]):
    def get_item(self, name: str) -> Optional[T]:
        """Get an item from the registry by name."""
        # Implementation

Documentation Guidelines

Docstrings

  • Use Google-style docstrings for all classes, methods, and functions
  • Include a brief description, parameters, return values, and exceptions
  • Add examples for complex functions
  • Document all public APIs

Example:

def apply_dynamic_decorators(text: str) -> str:
    """
    Apply all dynamic decorators found in the text.

    This function extracts decorator annotations from the text, applies
    the corresponding transformations, and returns the modified text.

    Args:
        text: The input text containing decorator annotations.

    Returns:
        The transformed text with decorators applied and annotations removed.

    Raises:
        DecoratorNotFoundError: If a referenced decorator is not registered.

    Example:
        >>> apply_dynamic_decorators("+++StepByStep(numbered=true)\\nExplain quantum computing.")
        "Please break down your explanation into numbered steps.\\n\\nExplain quantum computing."
    """
    # Implementation

Code Comments

  • Use comments to explain complex logic or non-obvious design decisions
  • Avoid redundant comments that simply restate the code
  • Use TODO, FIXME, or NOTE comments for future work

Error Handling

  • Use custom exception classes for specific error cases
  • Provide clear error messages with context
  • Handle exceptions at appropriate levels
  • Use context managers for resource cleanup

Example:

class DecoratorNotFoundError(Exception):
    """Raised when a referenced decorator is not found in the registry."""
    pass

def get_decorator(name: str) -> DecoratorBase:
    """Get a decorator from the registry by name."""
    if name not in _registry:
        raise DecoratorNotFoundError(f"Decorator '{name}' not found in registry")
    return _registry[name]

Testing Guidelines

Test Organization

  • Organize tests to mirror the package structure
  • Use descriptive test names that explain what's being tested
  • Group related tests in classes

Writing Tests

  • Use pytest for unit and integration tests
  • Write test cases for normal operation, edge cases, and error conditions
  • Use fixtures for common setup
  • Use parametrized tests for testing multiple inputs
  • Aim for high test coverage

Example:

import pytest
from prompt_decorators import apply_dynamic_decorators, register_decorator, DecoratorDefinition

@pytest.fixture
def example_decorator():
    """Fixture that provides a test decorator."""
    decorator_def = DecoratorDefinition(
        name="Example",
        description="Example decorator for testing",
        category="Test",
        parameters=[
            {
                "name": "prefix",
                "type": "string",
                "description": "Text to prepend",
                "default": "Prefix: "
            }
        ],
        transform_function="return prefix + text;"
    )
    register_decorator(decorator_def)
    return decorator_def

def test_apply_dynamic_decorators(example_decorator):
    """Test that decorators are correctly applied to text."""
    # Arrange
    prompt = """
    +++Example(prefix="Test: ")
    This is a test
    """

    # Act
    result = apply_dynamic_decorators(prompt)

    # Assert
    assert result.strip() == "Test: This is a test"

Mocking and Test Doubles

  • Use unittest.mock or pytest-mock for mocking
  • Create test doubles (mocks, stubs, fakes) for external dependencies
  • Use mocking judiciously, preferring integration tests when possible

Performance Considerations

  • Minimize JavaScript evaluation overhead
  • Cache expensive operations when appropriate
  • Profile code to identify bottlenecks
  • Be mindful of memory usage with large prompts

Working with JavaScript

The Prompt Decorators framework uses JavaScript for transform functions. Here are some guidelines:

Writing Transform Functions

  • Keep transform functions simple and focused
  • Avoid complex logic that is difficult to debug
  • Use ES6 syntax (template literals, arrow functions, etc.)
  • Test with multiple inputs, including edge cases

JavaScript Best Practices

  • Avoid using eval in transform functions
  • Use template literals for string concatenation
  • Handle potential errors (e.g., missing parameters)
  • Keep functions pure when possible

Example:

// Good
const result = `${prefix}${text}${suffix}`;

// Avoid
const result = prefix + text + suffix;

Security Considerations

  • Validate inputs before executing transform functions
  • Sanitize user inputs to prevent injection attacks
  • Implement timeout mechanisms for complex transforms
  • Avoid exposing sensitive information in transform functions

Working with Decorators

Creating Decorators

  • Choose clear, descriptive names
  • Define sensible default parameter values
  • Include comprehensive descriptions
  • Use appropriate parameter types
  • Test with various inputs and combinations

Decorator Categories

  • Assign decorators to appropriate categories
  • Document category-specific behavior
  • Consider compatibility between decorators in the same category

Decorator Registry

  • Register decorators at an appropriate time (import vs. runtime)
  • Handle versioning and deprecation appropriately
  • Document decorator dependencies

Continuous Integration

GitHub Actions

We use GitHub Actions for continuous integration:

  • Test Workflow: Runs tests on multiple Python versions
  • Lint Workflow: Checks code style and typing
  • Docs Workflow: Builds and validates documentation
  • Release Workflow: Publishes packages to PyPI

Pre-commit Hooks

We use pre-commit hooks to ensure code quality:

  • ruff: Checks formatting and linting
  • mypy: Verifies type annotations
  • pytest: Runs tests
  • doc8: Validates documentation

Release Process

Version Numbering

We follow Semantic Versioning:

  • MAJOR: Incompatible API changes
  • MINOR: Backwards-compatible feature additions
  • PATCH: Backwards-compatible bug fixes

Release Checklist

  1. Update version in pyproject.toml
  2. Update CHANGELOG.md with changes
  3. Create a release commit and tag
  4. Push to GitHub
  5. Create a GitHub release
  6. Build and publish to PyPI

Changelog Maintenance

  • Organize changes by type (Added, Changed, Deprecated, Removed, Fixed, Security)
  • Include contributor acknowledgements
  • Link to relevant issues and pull requests

Advanced Development Topics

Adding a New Integration

  1. Create a new directory in prompt_decorators/integrations/
  2. Implement the integration with clear interfaces
  3. Add tests in tests/integrations/
  4. Document the integration in docs/integrations/
  5. Update README.md with the new integration

Creating Custom Tools

  1. Define the tool's purpose and interface
  2. Implement the tool in an appropriate module
  3. Add tests for the tool
  4. Document the tool's usage
  5. Integrate with the main package if appropriate

Performance Optimization

  1. Profile code to identify bottlenecks
  2. Optimize critical paths
  3. Add benchmarks to measure improvements
  4. Document performance considerations

Troubleshooting Development Issues

Common Issues

Decorator Not Found

DecoratorNotFoundError: Decorator 'ExampleDecorator' not found in registry
  • Ensure the decorator is registered before use
  • Check for typos in the decorator name
  • Verify the import order

JavaScript Errors

JavaScriptError: Unexpected token in transform_function
  • Check JavaScript syntax in the transform function
  • Ensure all variables are defined
  • Test the transform function with different inputs

Type Checking Errors

mypy: error: Argument 1 to "apply_decorator" has incompatible type "str"; expected "DecoratorBase"
  • Fix type annotations
  • Update signature to match implementation
  • Add appropriate type casts

Debugging Strategies

  • Use logging to trace execution flow
  • Add debug prints for complex operations
  • Use a debugger for step-by-step execution
  • Isolate issues with minimal reproducible examples

Additional Resources

Next Steps

For detailed API documentation, see the API Reference.