Development Setup¶
This guide will help you set up a development environment for contributing to the Prompt Decorators project.
Prerequisites¶
Before you begin, ensure you have the following installed:
Setting Up Your Development Environment¶
1. Clone the Repository¶
2. Set Up a Virtual Environment¶
Using Poetry (Recommended)¶
Poetry automatically creates and manages a virtual environment for you:
# Install dependencies
poetry install
# Install development dependencies
poetry install --with dev,test,docs
Using venv and pip¶
# Create a virtual environment
python -m venv venv
# Activate the virtual environment
# On Windows:
venv\Scripts\activate
# On macOS/Linux:
source venv/bin/activate
# Install dependencies
pip install -e ".[dev,test,docs]"
3. Install Pre-commit Hooks¶
We use pre-commit hooks to ensure code quality:
4. Run Tests to Verify Setup¶
If all tests pass, your environment is set up correctly!
Project Structure¶
The project follows this structure:
prompt-decorators/
├── prompt_decorators/ # Main package
│ ├── __init__.py # Package exports
│ ├── core/ # Core decorator functionality
│ ├── schemas/ # JSON schemas
│ ├── utils/ # Utility functions
│ └── integrations/ # Integration with other systems
├── registry/ # Decorator definitions
├── schemas/ # JSON schema definitions
├── tests/ # Test suite
├── docs/ # Documentation
├── examples/ # Example usage
├── scripts/ # Development scripts
├── pyproject.toml # Project metadata and dependencies
└── README.md # Project overview
Development Workflow¶
Setting Up Your Branch¶
Making Changes¶
- Make your changes to the codebase
- Write tests for your changes
- Update documentation if necessary
Running Tests¶
# Run all tests
pytest
# Run tests with coverage report
pytest --cov=prompt_decorators
# Run specific tests
pytest tests/test_specific_file.py
# Run tests with verbose output
pytest -v
Running Linters¶
# Run ruff (linting and formatting)
ruff check .
ruff format .
# Run mypy (type checking)
mypy prompt_decorators
Building Documentation¶
# Generate API and decorator documentation
cd docs
python generate_docs.py
# Build documentation
cd docs
mkdocs build
# Serve documentation locally
mkdocs serve
Then visit http://localhost:8000 to view the documentation.
Note: Always use
generate_docs.py
to regenerate documentation when making changes to decorators or code. This is the sole official documentation generator for the project.
Working with Decorators¶
Creating a New Decorator¶
- Define your decorator in the registry directory:
// registry/my_custom_decorator.json
{
"name": "MyCustomDecorator",
"description": "A custom decorator that does X",
"category": "Custom",
"parameters": [
{
"name": "param1",
"type": "string",
"description": "Description of parameter",
"default": "default value"
}
],
"transform_function": "return 'Modified: ' + text;"
}
- Test your decorator:
from prompt_decorators import apply_dynamic_decorators, register_decorator, DecoratorDefinition
# Define your decorator in Python
my_decorator_def = DecoratorDefinition(
name="MyCustomDecorator",
description="A custom decorator that does X",
category="Custom",
parameters=[
{
"name": "param1",
"type": "string",
"description": "Description of parameter",
"default": "default value"
}
],
transform_function="return 'Modified: ' + text;"
)
# Register it
register_decorator(my_decorator_def)
# Test it
prompt = """
+++MyCustomDecorator(param1="test value")
This is a test prompt
"""
transformed = apply_dynamic_decorators(prompt)
print(transformed)
Running the Validator¶
Use the validator to check your decorator:
Using the Unified Validator Script¶
The project includes a unified validator script (prompt_validator.py
) that provides more comprehensive validation capabilities:
# Validate decorator syntax in a prompt
python scripts/prompt_validator.py syntax -t "+++Reasoning(depth=comprehensive)\nExplain quantum computing."
# Validate a decorator schema file
python scripts/prompt_validator.py schema -f registry/core/reasoning/deductive.json
# Validate all files in a directory
python scripts/prompt_validator.py directory -d registry/core -s registry
# Get help on all available commands
python scripts/prompt_validator.py --help
This script is especially useful for development as it combines multiple validation functions in a single tool.
Code Style Guidelines¶
Python Code¶
- Follow PEP 8 style guidelines
- Use ruff for formatting and linting
- Include type hints for all functions and methods
- Write docstrings in Google style format
Decorator Definitions¶
- Use clear, descriptive names for decorators and parameters
- Provide comprehensive descriptions
- Include reasonable default values for parameters
- Write efficient transform functions
Commit Messages¶
Follow the Conventional Commits format:
Types include: - feat:
(new feature) - fix:
(bug fix) - docs:
(documentation changes) - style:
(formatting changes) - refactor:
(code restructuring) - test:
(adding or refining tests) - chore:
(maintenance tasks)
Contributing Changes¶
Pull Request Process¶
- Ensure all tests pass
- Update documentation if needed
- Create a pull request with a clear description of changes
- Reference any related issues
- Wait for review and address any feedback
Code Review Checklist¶
Before submitting a PR, check that:
- Code follows the project's style guidelines
- Tests are added/updated and all tests pass
- Documentation is updated to reflect changes
- Code is properly typed with type annotations
- Pre-commit hooks pass with no issues
- Commit messages follow the project's format
Dependency Management¶
Adding a New Dependency¶
Using Poetry¶
# Add a main dependency
poetry add package-name
# Add a development dependency
poetry add --group dev package-name
# Add a test dependency
poetry add --group test package-name
# Add a documentation dependency
poetry add --group docs package-name
Using pip¶
Update setup.py
or pyproject.toml
with the new dependency, then:
Testing Guidelines¶
Writing Tests¶
- Every feature should have corresponding tests
- Use pytest fixtures for common test setups
- Aim for high test coverage (>90%)
- Include both unit tests and integration tests
Test Structure¶
import pytest
from prompt_decorators import apply_dynamic_decorators
def test_decorator_functionality():
"""Test that the decorator transforms the text as expected."""
# Arrange
prompt = """
+++TestDecorator(param1="value")
Test prompt
"""
# Act
result = apply_dynamic_decorators(prompt)
# Assert
assert "Expected transformation" in result
assert "Test prompt" in result
Release Process¶
Preparing a Release¶
- Update version in
pyproject.toml
- Update CHANGELOG.md
- Ensure all tests pass
- Build the distribution:
Publishing a Release¶
Continuous Integration¶
We use GitHub Actions for CI. Workflows are defined in .github/workflows/
:
tests.yml
: Runs tests on multiple Python versionslint.yml
: Runs linters and style checksdocs.yml
: Builds and validates documentationrelease.yml
: Handles package publishing
Getting Help¶
If you need help during development:
- Check the documentation
- Open an issue on GitHub
- Contact the maintainers
Next Steps¶
- Read the development guide for more detailed workflow information
- Check the core concepts to understand the framework's architecture
- Explore the tutorials for practical examples