Skip to content

Development Setup

This guide will help you set up a development environment for contributing to the Prompt Decorators project.

Prerequisites

Before you begin, ensure you have the following installed:

  • Python 3.11 or higher
  • Git
  • Poetry (recommended) or pip

Setting Up Your Development Environment

1. Clone the Repository

git clone https://github.com/synaptiai/prompt-decorators.git
cd prompt-decorators

2. Set Up a Virtual Environment

Poetry automatically creates and manages a virtual environment for you:

# Install dependencies
poetry install

# Install development dependencies
poetry install --with dev,test,docs

Using venv and pip

# Create a virtual environment
python -m venv venv

# Activate the virtual environment
# On Windows:
venv\Scripts\activate
# On macOS/Linux:
source venv/bin/activate

# Install dependencies
pip install -e ".[dev,test,docs]"

3. Install Pre-commit Hooks

We use pre-commit hooks to ensure code quality:

# Install pre-commit
pip install pre-commit

# Install the pre-commit hooks
pre-commit install

4. Run Tests to Verify Setup

# Using Poetry
poetry run pytest

# Using pip
pytest

If all tests pass, your environment is set up correctly!

Project Structure

The project follows this structure:

prompt-decorators/
├── prompt_decorators/          # Main package
│   ├── __init__.py             # Package exports
│   ├── core/                   # Core decorator functionality
│   ├── schemas/                # JSON schemas
│   ├── utils/                  # Utility functions
│   └── integrations/           # Integration with other systems
├── registry/                   # Decorator definitions
├── schemas/                    # JSON schema definitions
├── tests/                      # Test suite
├── docs/                       # Documentation
├── examples/                   # Example usage
├── scripts/                    # Development scripts
├── pyproject.toml              # Project metadata and dependencies
└── README.md                   # Project overview

Development Workflow

Setting Up Your Branch

# Create a new branch for your feature/bugfix
git checkout -b feature/your-feature-name

Making Changes

  1. Make your changes to the codebase
  2. Write tests for your changes
  3. Update documentation if necessary

Running Tests

# Run all tests
pytest

# Run tests with coverage report
pytest --cov=prompt_decorators

# Run specific tests
pytest tests/test_specific_file.py

# Run tests with verbose output
pytest -v

Running Linters

# Run ruff (linting and formatting)
ruff check .
ruff format .

# Run mypy (type checking)
mypy prompt_decorators

Building Documentation

# Generate API and decorator documentation
cd docs
python generate_docs.py

# Build documentation
cd docs
mkdocs build

# Serve documentation locally
mkdocs serve

Then visit http://localhost:8000 to view the documentation.

Note: Always use generate_docs.py to regenerate documentation when making changes to decorators or code. This is the sole official documentation generator for the project.

Working with Decorators

Creating a New Decorator

  1. Define your decorator in the registry directory:
// registry/my_custom_decorator.json
{
  "name": "MyCustomDecorator",
  "description": "A custom decorator that does X",
  "category": "Custom",
  "parameters": [
    {
      "name": "param1",
      "type": "string",
      "description": "Description of parameter",
      "default": "default value"
    }
  ],
  "transform_function": "return 'Modified: ' + text;"
}
  1. Test your decorator:
from prompt_decorators import apply_dynamic_decorators, register_decorator, DecoratorDefinition

# Define your decorator in Python
my_decorator_def = DecoratorDefinition(
    name="MyCustomDecorator",
    description="A custom decorator that does X",
    category="Custom",
    parameters=[
        {
            "name": "param1",
            "type": "string",
            "description": "Description of parameter",
            "default": "default value"
        }
    ],
    transform_function="return 'Modified: ' + text;"
)

# Register it
register_decorator(my_decorator_def)

# Test it
prompt = """
+++MyCustomDecorator(param1="test value")
This is a test prompt
"""

transformed = apply_dynamic_decorators(prompt)
print(transformed)

Running the Validator

Use the validator to check your decorator:

python -m prompt_decorators.tools.validator validate path/to/my_decorator.json

Using the Unified Validator Script

The project includes a unified validator script (prompt_validator.py) that provides more comprehensive validation capabilities:

# Validate decorator syntax in a prompt
python scripts/prompt_validator.py syntax -t "+++Reasoning(depth=comprehensive)\nExplain quantum computing."

# Validate a decorator schema file
python scripts/prompt_validator.py schema -f registry/core/reasoning/deductive.json

# Validate all files in a directory
python scripts/prompt_validator.py directory -d registry/core -s registry

# Get help on all available commands
python scripts/prompt_validator.py --help

This script is especially useful for development as it combines multiple validation functions in a single tool.

Code Style Guidelines

Python Code

  • Follow PEP 8 style guidelines
  • Use ruff for formatting and linting
  • Include type hints for all functions and methods
  • Write docstrings in Google style format

Decorator Definitions

  • Use clear, descriptive names for decorators and parameters
  • Provide comprehensive descriptions
  • Include reasonable default values for parameters
  • Write efficient transform functions

Commit Messages

Follow the Conventional Commits format:

<type>(optional scope): <description>

[optional body]

[optional footer(s)]

Types include: - feat: (new feature) - fix: (bug fix) - docs: (documentation changes) - style: (formatting changes) - refactor: (code restructuring) - test: (adding or refining tests) - chore: (maintenance tasks)

Contributing Changes

Pull Request Process

  1. Ensure all tests pass
  2. Update documentation if needed
  3. Create a pull request with a clear description of changes
  4. Reference any related issues
  5. Wait for review and address any feedback

Code Review Checklist

Before submitting a PR, check that:

  • Code follows the project's style guidelines
  • Tests are added/updated and all tests pass
  • Documentation is updated to reflect changes
  • Code is properly typed with type annotations
  • Pre-commit hooks pass with no issues
  • Commit messages follow the project's format

Dependency Management

Adding a New Dependency

Using Poetry

# Add a main dependency
poetry add package-name

# Add a development dependency
poetry add --group dev package-name

# Add a test dependency
poetry add --group test package-name

# Add a documentation dependency
poetry add --group docs package-name

Using pip

Update setup.py or pyproject.toml with the new dependency, then:

pip install -e ".[dev,test,docs]"

Testing Guidelines

Writing Tests

  • Every feature should have corresponding tests
  • Use pytest fixtures for common test setups
  • Aim for high test coverage (>90%)
  • Include both unit tests and integration tests

Test Structure

import pytest
from prompt_decorators import apply_dynamic_decorators

def test_decorator_functionality():
    """Test that the decorator transforms the text as expected."""
    # Arrange
    prompt = """
    +++TestDecorator(param1="value")
    Test prompt
    """

    # Act
    result = apply_dynamic_decorators(prompt)

    # Assert
    assert "Expected transformation" in result
    assert "Test prompt" in result

Release Process

Preparing a Release

  1. Update version in pyproject.toml
  2. Update CHANGELOG.md
  3. Ensure all tests pass
  4. Build the distribution:
# Using Poetry
poetry build

# Using setuptools
python -m build

Publishing a Release

# Using Poetry
poetry publish

# Using Twine
twine upload dist/*

Continuous Integration

We use GitHub Actions for CI. Workflows are defined in .github/workflows/:

  • tests.yml: Runs tests on multiple Python versions
  • lint.yml: Runs linters and style checks
  • docs.yml: Builds and validates documentation
  • release.yml: Handles package publishing

Getting Help

If you need help during development:

  • Check the documentation
  • Open an issue on GitHub
  • Contact the maintainers

Next Steps