Creating Decorators¶
This guide explains how to create your own custom decorators with the Prompt Decorators framework.
Overview¶
Custom decorators allow you to extend the framework with your own specialized behaviors. This is useful for:
- Creating domain-specific decorators for your field
- Building organization-specific prompt enhancements
- Optimizing decorators for particular LLM providers
- Implementing novel prompt engineering techniques
Decorator Structure¶
Each decorator consists of:
- A name that uniquely identifies it
- A description explaining its purpose
- A category for organizational purposes
- A set of parameters that control its behavior
- A transform function that applies the decoration
Creating a Basic Decorator¶
Using DecoratorDefinition¶
The simplest way to create a custom decorator is using the DecoratorDefinition
class:
from prompt_decorators import (
DecoratorDefinition,
register_decorator,
create_decorator_instance
)
# Define a custom decorator
my_decorator_def = DecoratorDefinition(
name="CustomPrefix",
description="Adds a custom prefix to the prompt",
category="Format",
parameters=[
{
"name": "prefix",
"type": "string",
"description": "Text to add before the prompt",
"default": "IMPORTANT: "
}
],
transform_function="return prefix + text;"
)
# Register the decorator for use
register_decorator(my_decorator_def)
# Create and use an instance of your decorator
custom_prefix = create_decorator_instance("CustomPrefix", prefix="ATTENTION: ")
result = custom_prefix("Please review this document carefully.")
print(result) # "ATTENTION: Please review this document carefully."
Transform Function¶
The transform_function
is the heart of your decorator. It's a JavaScript function (as a string) that takes the input text and applies the decoration. The function has access to:
- All defined parameters (e.g.,
prefix
in the example above) - The input text as
text
- Must return the transformed text
Examples of transform functions:
// Simple addition of prefix and suffix
"return prefix + text + suffix;"
// Conditional transformation
"if (style === 'formal') { return 'Formally: ' + text; } else { return 'Casually: ' + text; }"
// Text manipulation
"return text.split('.').join('.\n').trim();"
Parameters¶
Parameters allow your decorator to be customized. Each parameter has these properties:
name
: The parameter's identifiertype
: Data type (string
,boolean
,number
,enum
)description
: Documentation for the parameterdefault
: Default value if not specifiedenum
(optional): List of allowed values for enum types
Example of complex parameters:
parameters=[
{
"name": "style",
"type": "enum",
"description": "The style of formatting to apply",
"enum": ["formal", "casual", "technical"],
"default": "formal"
},
{
"name": "include_timestamp",
"type": "boolean",
"description": "Whether to include a timestamp",
"default": False
},
{
"name": "indent_level",
"type": "number",
"description": "Level of indentation (0-4)",
"default": 0
}
]
Advanced Decorator Creation¶
Composition of Decorators¶
You can create decorators that compose other decorators:
composite_decorator_def = DecoratorDefinition(
name="FormalSteps",
description="Combines formal tone with step-by-step instructions",
category="Composite",
parameters=[
{
"name": "numbered",
"type": "boolean",
"description": "Whether to number the steps",
"default": True
}
],
# First apply Tone(style=formal), then StepByStep with the numbered parameter
transform_function="""
const toneDecorator = createDecoratorInstance('Tone', { style: 'formal' });
const stepDecorator = createDecoratorInstance('StepByStep', { numbered: numbered });
return stepDecorator(toneDecorator(text));
"""
)
Conditional Logic¶
You can use conditional logic in your transform function:
conditional_decorator_def = DecoratorDefinition(
name="AdaptiveResponse",
description="Adapts the response based on complexity",
category="Adaptive",
parameters=[
{
"name": "complexity",
"type": "enum",
"description": "Complexity level of the input",
"enum": ["simple", "moderate", "complex"],
"default": "moderate"
}
],
transform_function="""
if (complexity === 'simple') {
const eli5 = createDecoratorInstance('ELI5');
return eli5(text);
} else if (complexity === 'moderate') {
const audience = createDecoratorInstance('Audience', { level: 'intermediate' });
return audience(text);
} else {
const detailed = createDecoratorInstance('Detailed', { depth: 'comprehensive' });
return detailed(text);
}
"""
)
Advanced Text Processing¶
For more complex transformations, you can perform detailed text processing:
text_processor_def = DecoratorDefinition(
name="QueryFocus",
description="Focuses a query on specific aspects",
category="Query",
parameters=[
{
"name": "aspects",
"type": "string",
"description": "Comma-separated list of aspects to focus on",
"default": "pros,cons"
}
],
transform_function="""
const aspectList = aspects.split(',').map(a => a.trim());
let result = "Please focus your analysis on the following aspects:\\n";
for (let i = 0; i < aspectList.length; i++) {
result += `${i+1}. ${aspectList[i]}\\n`;
}
result += "\\n" + text;
return result;
"""
)
Best Practices¶
Parameter Design¶
- Default Values: Always provide sensible default values for parameters
- Clear Names: Use descriptive, self-explanatory parameter names
- Limited Options: For enum types, limit options to a manageable set
- Documentation: Thoroughly document each parameter's purpose and effect
Transform Function¶
- Keep It Simple: Prefer simple transforms that do one thing well
- Error Handling: Include error handling for unexpected inputs
- Performance: Avoid unnecessary complexity that could impact performance
- Testability: Create transforms that can be easily tested
Documentation¶
- Clear Description: Provide a concise, clear description of what your decorator does
- Examples: Include examples of how to use your decorator
- Category: Choose an appropriate category that matches your decorator's purpose
- Compatibility: Document any known conflicts with other decorators
Testing Your Decorators¶
To test your custom decorators:
# Define and register your decorator
my_decorator_def = DecoratorDefinition(...)
register_decorator(my_decorator_def)
# Test with different inputs
test_cases = [
"Simple test case",
"Another test with different format",
"Edge case with special characters: @#$%^&*()"
]
my_decorator = create_decorator_instance("MyDecorator", param1="value1")
for test in test_cases:
transformed = my_decorator(test)
print(f"Original: {test}")
print(f"Transformed: {transformed}")
print("-" * 50)
Loading Decorators from Files¶
For reusability, you can define decorators in JSON files:
{
"name": "BulletedSummary",
"description": "Creates a bulleted summary format",
"category": "Format",
"parameters": [
{
"name": "points",
"type": "number",
"description": "Number of bullet points to request",
"default": 5
},
{
"name": "style",
"type": "enum",
"description": "Bullet point style",
"enum": ["dash", "star", "arrow"],
"default": "dash"
}
],
"transform_function": "return `Please summarize the following into ${points} key points using ${style === 'dash' ? '-' : style === 'star' ? '*' : '→'} as bullet points:\\n\\n${text}`;"
}
Load and register this decorator:
import json
from prompt_decorators import DecoratorDefinition, register_decorator
# Load from a JSON file
with open("path/to/my_decorators.json", "r") as f:
decorators_data = json.load(f)
# If it's a single decorator
decorator_def = DecoratorDefinition(**decorators_data)
register_decorator(decorator_def)
# If it's an array of decorators
for decorator_data in decorators_data:
decorator_def = DecoratorDefinition(**decorator_data)
register_decorator(decorator_def)
Decorator Registry Management¶
Listing Decorators¶
from prompt_decorators import get_available_decorators
# Get all decorators
all_decorators = get_available_decorators()
# Filter by category
format_decorators = [d for d in all_decorators if d.category == "Format"]
# Find a specific decorator
reasoning_decorator = next((d for d in all_decorators if d.name == "Reasoning"), None)
Decorator Persistence¶
To persist your custom decorators across sessions, you can:
- Save them to JSON files
- Load and register them at application startup
- Organize them into decorator packages
Domain-Specific Examples¶
Scientific Research Decorator¶
scientific_method_def = DecoratorDefinition(
name="ScientificMethod",
description="Structures response according to scientific method",
category="Domain",
parameters=[
{
"name": "include_abstract",
"type": "boolean",
"description": "Whether to include an abstract section",
"default": True
}
],
transform_function="""
let result = "Please structure your response according to the scientific method with the following sections:\\n";
if (include_abstract) {
result += "1. Abstract: A brief summary of the entire analysis\\n";
}
result += `${include_abstract ? "2" : "1"}. Question/Problem: Clearly define the research question\\n`;
result += `${include_abstract ? "3" : "2"}. Hypothesis: Formulate a testable hypothesis\\n`;
result += `${include_abstract ? "4" : "3"}. Methodology: Describe how to test the hypothesis\\n`;
result += `${include_abstract ? "5" : "4"}. Results: Present the expected findings\\n`;
result += `${include_abstract ? "6" : "5"}. Discussion: Interpret the results and their implications\\n`;
result += `${include_abstract ? "7" : "6"}. Conclusion: Summarize the findings and suggest next steps\\n\\n`;
result += text;
return result;
"""
)
Business Analysis Decorator¶
business_analysis_def = DecoratorDefinition(
name="BusinessAnalysis",
description="Structures response as a business analysis",
category="Domain",
parameters=[
{
"name": "framework",
"type": "enum",
"description": "Business analysis framework to use",
"enum": ["SWOT", "Porter", "PESTEL"],
"default": "SWOT"
}
],
transform_function="""
let result = `Please analyze the following using a ${framework} framework:\\n\\n`;
if (framework === "SWOT") {
result += "Structure your analysis with these sections:\\n";
result += "1. Strengths: Internal positive factors\\n";
result += "2. Weaknesses: Internal negative factors\\n";
result += "3. Opportunities: External positive factors\\n";
result += "4. Threats: External negative factors\\n\\n";
} else if (framework === "Porter") {
result += "Structure your analysis using Porter's Five Forces:\\n";
result += "1. Threat of new entrants\\n";
result += "2. Bargaining power of buyers\\n";
result += "3. Bargaining power of suppliers\\n";
result += "4. Threat of substitute products or services\\n";
result += "5. Intensity of competitive rivalry\\n\\n";
} else if (framework === "PESTEL") {
result += "Structure your analysis using PESTEL framework:\\n";
result += "1. Political factors\\n";
result += "2. Economic factors\\n";
result += "3. Social factors\\n";
result += "4. Technological factors\\n";
result += "5. Environmental factors\\n";
result += "6. Legal factors\\n\\n";
}
result += text;
return result;
"""
)
Next Steps¶
- Explore the Tutorial: Creating a Custom Decorator for step-by-step examples
- Learn about Tutorial: Combining Decorators for advanced use cases
- See the specification for technical details of the decorator system
Validating Custom Decorators¶
After creating a custom decorator, it's important to validate it to ensure it works correctly and follows the framework's standards.
Using Validator Tools¶
You can validate your custom decorator using the validation tools:
# For JSON-based decorators, validate the schema
python scripts/prompt_validator.py schema -f path/to/your/custom_decorator.json
# To validate a decorator's syntax in a prompt
python scripts/prompt_validator.py syntax -t "+++CustomPrefix(prefix='CUSTOM: ')\nThis is a test prompt."
Validating Programmatically¶
You can also validate decorators programmatically:
from prompt_decorators.core.validation import TypeValidator, RangeValidator
# Validate a parameter value
string_validator = TypeValidator("string")
is_valid = string_validator.validate("This is a string") # Returns the string if valid
# Validate a numeric range
range_validator = RangeValidator(min_value=1, max_value=10)
valid_number = range_validator.validate(5) # Returns 5 if valid
# Will raise ValidationError for values outside the range
# Validate a decorator's parameters using extract_decorators
from prompt_decorators.core.dynamic_decorator import extract_decorators
prompt = "+++CustomPrefix(prefix='TEST: ')\nMy prompt text."
try:
decorators, text = extract_decorators(prompt)
print(f"Valid decorators found: {[d.name for d in decorators]}")
except Exception as e:
print(f"Validation error: {e}")
Common Validation Issues¶
Watch out for these common issues when creating custom decorators:
- Parameter Type Mismatches: Ensure parameter values match their declared types
- Missing Required Parameters: All required parameters must be provided
- Invalid Transform Functions: Syntax errors in transform functions
- Naming Conflicts: Decorator names must be unique in the registry