Skip to content

Compatibility

This guide explains compatibility considerations for the Prompt Decorators framework, including LLM provider compatibility, decorator conflicts, and integration options.

LLM Provider Compatibility

The Prompt Decorators framework is designed to work with any LLM provider, as it transforms decorators into natural language instructions that any model can understand. However, there might be important considerations for each provider.

OpenAI

OpenAI models work well with Prompt Decorators.

import openai
from prompt_decorators import apply_dynamic_decorators

# Create a decorated prompt
prompt = """
+++StepByStep(numbered=true)
+++Audience(level="beginner")
Explain quantum computing.
"""
transformed_prompt = apply_dynamic_decorators(prompt)

# Send to OpenAI
response = openai.chat.completions.create(
    model="gpt-4o",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": transformed_prompt}
    ]
)

Considerations

  • gpt-4o and newer models have the best understanding of complex instructions
  • Add an explicit system message to set baseline behavior

Anthropic Claude

Claude models work well with Prompt Decorators' natural language transformations.

import anthropic
from prompt_decorators import apply_dynamic_decorators

# Set up Anthropic client
client = anthropic.Anthropic(api_key="your-anthropic-api-key")

# Create a decorated prompt
prompt = """
+++Reasoning(depth="comprehensive")
+++OutputFormat(format="markdown")
What are the implications of quantum computing for cryptography?
"""
transformed_prompt = apply_dynamic_decorators(prompt)

# Send to Anthropic Claude
message = client.messages.create(
    model="claude-3-7-sonnet-latest",
    max_tokens=1000,
    messages=[
        {"role": "user", "content": transformed_prompt}
    ]
)

Considerations

Other Providers

The framework is compatible with many other LLM providers:

  • Hugging Face Models: Work well with explicit instructions generated by decorators
  • Google Gemini: Compatible with transformer decorators
  • Mistral AI: Works with instructions generated by the framework
  • Llama/Llama 2/Llama 3: Compatible with properly transformed prompts
  • Local models: Can use decorators with any locally deployed model

Decorator Compatibility and Conflicts

Some decorators may have incompatible behaviors. The framework handles conflicts according to these rules:

  1. Precedence Rule: When decorators have fundamentally incompatible requirements, the later decorator in the sequence takes precedence
  2. Parameter Conflicts: When facing a parameter conflict between decorators, the parameter in the later decorator takes precedence
  3. Graceful Degradation: If a model can't fully implement a decorator's behavior, it degrades gracefully with partial implementation

Known Decorator Conflicts

Decorator Incompatible With Reason Resolution
ELI5 Technical, Academic Contradictory audience adaptation Last decorator wins
Concise Detailed Contradictory verbosity goals Last decorator wins
Inductive Deductive Contradictory reasoning methods Last decorator wins
Bullet OutputFormat(format=json) Structural conflict Last decorator wins

Compatibility Checking

You can programmatically check for known conflicts:

from prompt_decorators import (
    get_available_decorators,
    create_decorator_instance
)

# Get decorator definitions
decorators = get_available_decorators()

# Check if two decorators are compatible
def check_compatibility(decorator1_name, decorator2_name):
    dec1 = next((d for d in decorators if d.name == decorator1_name), None)
    dec2 = next((d for d in decorators if d.name == decorator2_name), None)

    if not dec1 or not dec2:
        return "One or both decorators not found"

    # Check for known conflicts
    known_conflicts = {
        "ELI5": ["Technical", "Academic"],
        "Concise": ["Detailed"],
        "Inductive": ["Deductive"],
        "Bullet": []  # Special case for OutputFormat conflicts
    }

    if dec1.name in known_conflicts and dec2.name in known_conflicts[dec1.name]:
        return f"Known conflict: {dec1.name} conflicts with {dec2.name}"

    if dec2.name in known_conflicts and dec1.name in known_conflicts[dec2.name]:
        return f"Known conflict: {dec2.name} conflicts with {dec1.name}"

    # Special case for OutputFormat with format=json and Bullet
    if dec1.name == "OutputFormat" and dec2.name == "Bullet":
        if hasattr(dec1, "parameters") and any(p.get("name") == "format" and p.get("default") == "json" for p in dec1.parameters):
            return "Conflict: OutputFormat(format=json) conflicts with Bullet"

    return "No known conflicts"

# Example usage
print(check_compatibility("ELI5", "Technical"))  # Known conflict
print(check_compatibility("StepByStep", "Reasoning"))  # No conflict

Integration Options

Direct Integration

The simplest integration method is to apply decorators before sending prompts to an LLM:

from prompt_decorators import apply_dynamic_decorators
from your_llm_client import LLMClient

client = LLMClient()

def enhanced_prompt(prompt_text, decorators=None):
    decorated_text = prompt_text

    # Apply inline decorators from the text
    if "+++" in prompt_text:
        decorated_text = apply_dynamic_decorators(prompt_text)

    # Apply additional decorators programmatically
    if decorators:
        for decorator_name, params in decorators.items():
            decorator = create_decorator_instance(decorator_name, **params)
            decorated_text = decorator(decorated_text)

    # Send to LLM
    return client.generate(decorated_text)

MCP Integration

For Anthropic Claude and other compatible clients, use the Model Context Protocol (MCP) integration:

# Run the MCP server (general use)
python -m prompt_decorators.integrations.mcp

# For Claude Desktop integration
python -m prompt_decorators.integrations.mcp.claude_desktop

This exposes decorator functionality through a set of tools that can be used by any MCP-compatible client.

Middleware Integration

For web applications or API services, you can implement decorators as middleware:

from fastapi import FastAPI, Request, Depends
from prompt_decorators import apply_dynamic_decorators

app = FastAPI()

async def prompt_decorator_middleware(request: Request):
    # Extract the prompt from the request
    body = await request.json()
    if "prompt" in body:
        body["prompt"] = apply_dynamic_decorators(body["prompt"])
    return body

@app.post("/generate")
async def generate(data: dict = Depends(prompt_decorator_middleware)):
    # The prompt has already been transformed by the middleware
    return {"result": llm_client.generate(data["prompt"])}

Model-Specific Optimization

Different models may respond better to slightly different instruction formats. You can optimize for specific models:

from prompt_decorators import DecoratorDefinition, register_decorator

# Define model-specific versions of decorators
gpt4_reasoning_decorator = DecoratorDefinition(
    name="GPT4_Reasoning",
    description="Reasoning decorator optimized for gpt-4o",
    category="ModelSpecific",
    parameters=[
        {
            "name": "depth",
            "type": "enum",
            "description": "Depth of reasoning",
            "enum": ["basic", "moderate", "comprehensive"],
            "default": "moderate"
        }
    ],
    transform_function="""
    let instruction = "I want you to think through this step by step, showing your full reasoning process. ";

    if (depth === "basic") {
        instruction += "Focus on the key logical steps.";
    } else if (depth === "moderate") {
        instruction += "Provide a balanced explanation with important details and connections.";
    } else if (depth === "comprehensive") {
        instruction += "Show a detailed, thorough analysis considering multiple angles and perspectives.";
    }

    return instruction + "\\n\\n" + text;
    """
)

# Register the model-specific decorator
register_decorator(gpt4_reasoning_decorator)

# Use based on the target model
def optimize_for_model(prompt, model_name):
    if model_name.startswith("gpt-4o"):
        # Use gpt-4o optimized decorators
        reasoning = create_decorator_instance("GPT4_Reasoning", depth="comprehensive")
        return reasoning(prompt)
    elif model_name.startswith("claude"):
        # Use Claude optimized decorators
        reasoning = create_decorator_instance("Reasoning", depth="comprehensive")
        return reasoning(prompt)
    else:
        # Use default decorators
        reasoning = create_decorator_instance("Reasoning", depth="comprehensive")
        return reasoning(prompt)

Browser Extension Integration

For services without direct API access, you can build browser extensions:

// JavaScript example for a browser extension
function applyDecorators(text) {
    // Simple regex-based parser for browser extension
    const decoratorPattern = /\+\+\+([A-Za-z]+)(?:\(([^)]+)\))?/g;
    let transformed = text;

    // Extract decorators
    let decorators = [];
    let match;
    while ((match = decoratorPattern.exec(text)) !== null) {
        const name = match[1];
        const paramsStr = match[2] || "";

        // Parse parameters
        const params = {};
        if (paramsStr) {
            paramsStr.split(',').forEach(pair => {
                const [key, value] = pair.split('=').map(s => s.trim());
                params[key] = value;
            });
        }

        decorators.push({ name, params, fullMatch: match[0] });
    }

    // Apply transformations (simplified)
    decorators.forEach(dec => {
        transformed = transformed.replace(dec.fullMatch, "");

        if (dec.name === "StepByStep") {
            const numbered = dec.params.numbered === "true";
            transformed = `Please break down your response into ${numbered ? "numbered" : "clear"} steps.\n\n${transformed}`;
        } else if (dec.name === "Reasoning") {
            const depth = dec.params.depth || "moderate";
            transformed = `Please provide ${depth} reasoning in your response.\n\n${transformed}`;
        }
        // Add more decorator implementations as needed
    });

    return transformed;
}

// Hook into webpage
document.querySelector('#prompt-textarea').addEventListener('keydown', function(e) {
    if (e.key === 'Enter' && !e.shiftKey) {
        const text = this.value;
        if (text.includes('+++')) {
            e.preventDefault();
            this.value = applyDecorators(text);
            // Then submit the form programmatically
            document.querySelector('form').submit();
        }
    }
});

Next Steps