Skip to content

model_specific

Model-Specific Decorator Module.

This module provides base classes and utilities for model-specific decorator adaptations.

Module Variables

T

Type: TypeVar

Value: ~T

logger

Type: Logger

Value: <Logger prompt_decorators.core.model_specific (INFO)>

Classes

ModelSpecificDecorator

Base class for model-specific decorator adaptations.

This class extends BaseDecorator to support model-specific adaptations, allowing decorators to adjust their behavior based on the model being used.

Bases: prompt_decorators.core.base.DecoratorBase, typing.Generic

Attributes

  • from_dict: classmethod = <classmethod(<function ModelSpecificDecorator.from_dict at 0x105c18d60>)>

Methods

__init__

Initialize a model-specific decorator.

Args: model_id: ID of the model to adapt for (optional) **kwargs: Additional parameters for the decorator. These are passed to the parent class constructor.

Signature: __init__(self, model_id: Optional[str] = None, **kwargs)

Parameters:

  • model_id: Optional (default: None)
  • kwargs:
apply

Apply the decorator to a prompt with model-specific adaptations.

This implementation first checks if the decorator is supported by the model, then delegates to either apply_for_model or apply_fallback based on support.

Args: prompt: The original prompt to decorate

Returns: The decorated prompt

Signature: apply(self, prompt: str) -> str

Parameters:

  • prompt: str

Returns: str

apply_fallback

Apply a fallback decoration when model doesn't support this decorator.

This method provides a fallback implementation that still attempts to achieve a similar effect, but with simplified instructions.

Args: prompt: The original prompt to decorate

Returns: The decorated prompt

Signature: apply_fallback(self, prompt: str) -> str

Parameters:

  • prompt: str

Returns: str

apply_for_model

Apply the decorator with model-specific adaptations.

This method should be implemented by subclasses to provide model-specific adaptations.

Args: prompt: The original prompt to decorate

Returns: The decorated prompt

Signature: apply_for_model(self, prompt: str) -> str

Parameters:

  • prompt: str

Returns: str

apply_to_prompt

Apply the decorator to a prompt.

This method uses the transformation_template to transform the prompt according to the decorator's intended behavior.

Args: prompt: The prompt to decorate

Returns: The decorated prompt

Signature: apply_to_prompt(self, prompt: str) -> str

Parameters:

  • prompt: str

Returns: str

is_supported_by_model

Check if this decorator is supported by the current model.

Args: self: The decorator instance

Returns: True if supported, False otherwise

Signature: is_supported_by_model(self) -> bool

Parameters:

Returns: bool

set_model

Set the model ID for this decorator.

Args: model_id: ID of the model to adapt for

Returns: None

Signature: set_model(self, model_id: str) -> None

Parameters:

  • model_id: str
to_dict

Convert the decorator to a dictionary.

Args: self: The decorator instance

Returns: Dictionary representation of the decorator

Signature: to_dict(self) -> Dict[str, Any]

Parameters:

Returns: Dict

transform_response

Transform the LLM response according to the decorator's behavior.

The base implementation returns the response unchanged. Subclasses should override this method if they need to modify the response.

Args: response: The LLM response to transform

Returns: The transformed response

Signature: transform_response(self, response: str) -> str

Parameters:

  • response: str

Returns: str

ModelSpecificDecoratorFactory

Factory for creating model-specific decorators.

This class provides methods for creating model-specific versions of decorators. It allows for customizing decorator behavior based on specific model requirements.

The factory creates decorator instances that are tailored to work optimally with particular language models, taking into account their unique capabilities and limitations.

Attributes

  • create_for_model: staticmethod = <staticmethod(<function ModelSpecificDecoratorFactory.create_for_model at 0x105c18c20>)>

Methods

create_for_model

Create a model-specific version of a decorator.

This method creates a new class that extends both ModelSpecificDecorator and the original decorator class, allowing for model-specific adaptations.

Args: decorator_class: Original decorator class model_id: ID of the model to adapt for **params: Parameters for the decorator. These are passed to the decorator constructor.

Returns: Instance of the model-specific decorator

Signature: create_for_model(decorator_class: Type[prompt_decorators.core.base.DecoratorBase], model_id: str, **params) -> prompt_decorators.core.base.DecoratorBase

Parameters:

  • decorator_class: Type
  • model_id: str
  • params:

Returns: DecoratorBase