model_specific¶
Model-Specific Decorator Module.
This module provides base classes and utilities for model-specific decorator adaptations.
Module Variables¶
T
¶
Type: TypeVar
Value: ~T
logger
¶
Type: Logger
Value: <Logger prompt_decorators.core.model_specific (INFO)>
Classes¶
ModelSpecificDecorator
¶
Base class for model-specific decorator adaptations.
This class extends BaseDecorator to support model-specific adaptations, allowing decorators to adjust their behavior based on the model being used.
Bases: prompt_decorators.core.base.DecoratorBase
, typing.Generic
Attributes¶
from_dict
:classmethod
=<classmethod(<function ModelSpecificDecorator.from_dict at 0x105c18d60>)>
Methods¶
__init__
¶
Initialize a model-specific decorator.
Args: model_id: ID of the model to adapt for (optional) **kwargs: Additional parameters for the decorator. These are passed to the parent class constructor.
Signature: __init__(self, model_id: Optional[str] = None, **kwargs)
Parameters:
model_id
:Optional
(default:None
)kwargs
:
apply
¶
Apply the decorator to a prompt with model-specific adaptations.
This implementation first checks if the decorator is supported by the model, then delegates to either apply_for_model or apply_fallback based on support.
Args: prompt: The original prompt to decorate
Returns: The decorated prompt
Signature: apply(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
apply_fallback
¶
Apply a fallback decoration when model doesn't support this decorator.
This method provides a fallback implementation that still attempts to achieve a similar effect, but with simplified instructions.
Args: prompt: The original prompt to decorate
Returns: The decorated prompt
Signature: apply_fallback(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
apply_for_model
¶
Apply the decorator with model-specific adaptations.
This method should be implemented by subclasses to provide model-specific adaptations.
Args: prompt: The original prompt to decorate
Returns: The decorated prompt
Signature: apply_for_model(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
apply_to_prompt
¶
Apply the decorator to a prompt.
This method uses the transformation_template to transform the prompt according to the decorator's intended behavior.
Args: prompt: The prompt to decorate
Returns: The decorated prompt
Signature: apply_to_prompt(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
is_supported_by_model
¶
Check if this decorator is supported by the current model.
Args: self: The decorator instance
Returns: True if supported, False otherwise
Signature: is_supported_by_model(self) -> bool
Parameters:
Returns: bool
set_model
¶
Set the model ID for this decorator.
Args: model_id: ID of the model to adapt for
Returns: None
Signature: set_model(self, model_id: str) -> None
Parameters:
model_id
:str
to_dict
¶
Convert the decorator to a dictionary.
Args: self: The decorator instance
Returns: Dictionary representation of the decorator
Signature: to_dict(self) -> Dict[str, Any]
Parameters:
Returns: Dict
transform_response
¶
Transform the LLM response according to the decorator's behavior.
The base implementation returns the response unchanged. Subclasses should override this method if they need to modify the response.
Args: response: The LLM response to transform
Returns: The transformed response
Signature: transform_response(self, response: str) -> str
Parameters:
response
:str
Returns: str
ModelSpecificDecoratorFactory
¶
Factory for creating model-specific decorators.
This class provides methods for creating model-specific versions of decorators. It allows for customizing decorator behavior based on specific model requirements.
The factory creates decorator instances that are tailored to work optimally with particular language models, taking into account their unique capabilities and limitations.
Attributes¶
create_for_model
:staticmethod
=<staticmethod(<function ModelSpecificDecoratorFactory.create_for_model at 0x105c18c20>)>
Methods¶
create_for_model
¶
Create a model-specific version of a decorator.
This method creates a new class that extends both ModelSpecificDecorator and the original decorator class, allowing for model-specific adaptations.
Args: decorator_class: Original decorator class model_id: ID of the model to adapt for **params: Parameters for the decorator. These are passed to the decorator constructor.
Returns: Instance of the model-specific decorator
Signature: create_for_model(decorator_class: Type[prompt_decorators.core.base.DecoratorBase], model_id: str, **params) -> prompt_decorators.core.base.DecoratorBase
Parameters:
decorator_class
:Type
model_id
:str
params
:
Returns: DecoratorBase