base¶
Base classes for prompt decorators.
This module provides the base classes and utilities for creating and using prompt decorators.
Classes¶
BaseDecorator
¶
Base class for all prompt decorators.
This class defines the common interface and behavior for all decorators. Subclasses should implement the apply_to_prompt and transform_response methods.
Attributes¶
conflicts_with
:set
=set()
description
:str
='Base decorator class'
from_dict
:classmethod
=<classmethod(<function DecoratorBase.from_dict at 0x105acf4c0>)>
name
:str
='DecoratorBase'
parameters
:dict
={}
transformation_template
:dict
={'instruction': '', 'parameterMapping': {}, 'placement': 'prepend', 'compositionBehavior': 'accumulate'}
Methods¶
__init__
¶
Initialize a decorator with parameter values.
Args: **kwargs: Parameter values for the decorator
Raises: ValidationError: If any parameter values are invalid
Signature: __init__(self, **kwargs)
Parameters:
kwargs
:
apply_to_prompt
¶
Apply the decorator to a prompt.
This method uses the transformation_template to transform the prompt according to the decorator's intended behavior.
Args: prompt: The prompt to decorate
Returns: The decorated prompt
Signature: apply_to_prompt(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
transform_response
¶
Transform the LLM response according to the decorator's behavior.
The base implementation returns the response unchanged. Subclasses should override this method if they need to modify the response.
Args: response: The LLM response to transform
Returns: The transformed response
Signature: transform_response(self, response: str) -> str
Parameters:
response
:str
Returns: str
DecoratorBase
¶
Base class for all prompt decorators.
This class defines the common interface and behavior for all decorators. Subclasses should implement the apply_to_prompt and transform_response methods.
Attributes¶
conflicts_with
:set
=set()
description
:str
='Base decorator class'
from_dict
:classmethod
=<classmethod(<function DecoratorBase.from_dict at 0x105acf4c0>)>
name
:str
='DecoratorBase'
parameters
:dict
={}
transformation_template
:dict
={'instruction': '', 'parameterMapping': {}, 'placement': 'prepend', 'compositionBehavior': 'accumulate'}
Methods¶
__init__
¶
Initialize a decorator with parameter values.
Args: **kwargs: Parameter values for the decorator
Raises: ValidationError: If any parameter values are invalid
Signature: __init__(self, **kwargs)
Parameters:
kwargs
:
apply_to_prompt
¶
Apply the decorator to a prompt.
This method uses the transformation_template to transform the prompt according to the decorator's intended behavior.
Args: prompt: The prompt to decorate
Returns: The decorated prompt
Signature: apply_to_prompt(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
transform_response
¶
Transform the LLM response according to the decorator's behavior.
The base implementation returns the response unchanged. Subclasses should override this method if they need to modify the response.
Args: response: The LLM response to transform
Returns: The transformed response
Signature: transform_response(self, response: str) -> str
Parameters:
response
:str
Returns: str
DecoratorParameter
¶
Represents a parameter for a decorator.
This class is used by dynamic decorators to define parameters and validate values.
Attributes¶
from_dict
:classmethod
=<classmethod(<function DecoratorParameter.from_dict at 0x105acf380>)>
Methods¶
__init__
¶
Initialize a decorator parameter.
Args: name: The name of the parameter description: A description of the parameter type_: The type of the parameter (string, integer, float, boolean, enum) required: Whether the parameter is required default: Default value for the parameter enum_values: Possible values for enum type min_value: Minimum value for numeric types max_value: Maximum value for numeric types min_length: Minimum length for string or array types max_length: Maximum length for string or array types pattern: Regex pattern for string validation
Signature: __init__(self, name: str, description: str, type_: str = 'string', required: bool = False, default: Any = None, enum_values: Optional[List[str]] = None, min_value: Union[int, float, NoneType] = None, max_value: Union[int, float, NoneType] = None, min_length: Optional[int] = None, max_length: Optional[int] = None, pattern: Optional[str] = None)
Parameters:
name
:str
description
:str
type_
:str
(default:string
)required
:bool
(default:False
)default
:Any
(default:None
)enum_values
:Optional
(default:None
)min_value
:Union
(default:None
)max_value
:Union
(default:None
)min_length
:Optional
(default:None
)max_length
:Optional
(default:None
)pattern
:Optional
(default:None
)
to_dict
¶
Convert the parameter to a dictionary representation.
Signature: to_dict(self) -> Dict[str, Any]
Parameters:
Returns: Dict
validate
¶
Validate a parameter value against constraints.
Args: value: The value to validate
Returns: The validated value (possibly converted to the correct type)
Raises: ValidationError: If the value is invalid
Signature: validate(self, value: Any) -> Any
Parameters:
value
:Any
Returns: Any
Parameter
¶
Represents a parameter for a decorator.
This class defines the metadata for a parameter, including its name, type, description, default value, and constraints.
Bases: pydantic.main.BaseModel
Attributes¶
model_config
:dict
={}
Methods¶
__init__
¶
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError
if the input data cannot be validated to form a valid model.
self
is explicitly positional-only to allow self
as a field name.
Signature: __init__(self, /, **data: 'Any') -> 'None'
Parameters:
data
:Any
Returns: None
copy
¶
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy
instead.
If you need include
or exclude
, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
Returns: A copy of the model with included, excluded and updated fields as specified.
Signature: copy(self, *, include: 'AbstractSetIntStr | MappingIntStrAny | None' = None, exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None, update: 'Dict[str, Any] | None' = None, deep: 'bool' = False) -> 'Self'
Parameters:
include
:AbstractSetIntStr | MappingIntStrAny | None
(default:None
)exclude
:AbstractSetIntStr | MappingIntStrAny | None
(default:None
)update
:Dict[str, Any] | None
(default:None
)deep
:bool
(default:False
)
Returns: Self
dict
¶
Signature: dict(self, *, include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False) -> 'Dict[str, Any]'
Parameters:
include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)
Returns: Dict[str, Any]
json
¶
Signature: json(self, *, include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False, encoder: 'Callable[[Any], Any] | None' = PydanticUndefined, models_as_dict: 'bool' = PydanticUndefined, **dumps_kwargs: 'Any') -> 'str'
Parameters:
include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)encoder
:Callable[[Any], Any] | None
(default:PydanticUndefined
)models_as_dict
:bool
(default:PydanticUndefined
)dumps_kwargs
:Any
Returns: str
model_copy
¶
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
Args: update: Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. deep: Set to True
to make a deep copy of the model.
Returns: New model instance.
Signature: model_copy(self, *, update: 'Mapping[str, Any] | None' = None, deep: 'bool' = False) -> 'Self'
Parameters:
update
:Mapping[str, Any] | None
(default:None
)deep
:bool
(default:False
)
Returns: Self
model_dump
¶
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args: mode: The mode in which to_python
should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field's alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None
. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a PydanticSerializationError
. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A dictionary representation of the model.
Signature: model_dump(self, *, mode: "Literal['json', 'python'] | str" = 'python', include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, context: 'Any | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False, round_trip: 'bool' = False, warnings: "bool | Literal['none', 'warn', 'error']" = True, serialize_as_any: 'bool' = False) -> 'dict[str, Any]'
Parameters:
mode
:Literal['json', 'python'] | str
(default:python
)include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)context
:Any | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)round_trip
:bool
(default:False
)warnings
:bool | Literal['none', 'warn', 'error']
(default:True
)serialize_as_any
:bool
(default:False
)
Returns: dict[str, Any]
model_dump_json
¶
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic's to_json
method.
Args: indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None
. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a PydanticSerializationError
. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A JSON string representation of the model.
Signature: model_dump_json(self, *, indent: 'int | None' = None, include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, context: 'Any | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False, round_trip: 'bool' = False, warnings: "bool | Literal['none', 'warn', 'error']" = True, serialize_as_any: 'bool' = False) -> 'str'
Parameters:
indent
:int | None
(default:None
)include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)context
:Any | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)round_trip
:bool
(default:False
)warnings
:bool | Literal['none', 'warn', 'error']
(default:True
)serialize_as_any
:bool
(default:False
)
Returns: str
model_post_init
¶
Override this method to perform additional initialization after __init__
and model_construct
. This is useful if you want to do some validation that requires the entire model to be initialized.
Signature: model_post_init(self, _BaseModel__context: 'Any') -> 'None'
Parameters:
_BaseModel__context
:Any
Returns: None
validate_value
¶
Validate a parameter value against the parameter's constraints.
Args: value: The value to validate
Returns: The validated value (possibly converted to the correct type)
Raises: ValidationError: If the value is invalid
Signature: validate_value(self, value: Any) -> Any
Parameters:
value
:Any
Returns: Any
ParameterType
¶
Types of parameters supported in decorators.
Bases: builtins.str
, enum.Enum
Attributes¶
ARRAY
:ParameterType
=<ParameterType.ARRAY: 'array'>
BOOLEAN
:ParameterType
=<ParameterType.BOOLEAN: 'boolean'>
ENUM
:ParameterType
=<ParameterType.ENUM: 'enum'>
FLOAT
:ParameterType
=<ParameterType.FLOAT: 'float'>
INTEGER
:ParameterType
=<ParameterType.INTEGER: 'integer'>
OBJECT
:ParameterType
=<ParameterType.OBJECT: 'object'>
STRING
:ParameterType
=<ParameterType.STRING: 'string'>
Methods¶
__init__
¶
Signature: __init__(self, *args, **kwds)
Parameters:
args
:kwds
:
ValidationError
¶
Exception raised when decorator validation fails.
Bases: builtins.Exception
Methods¶
__init__
¶
Initialize ValidationError.
Args: message: The error message decorator_name: Optional name of the decorator where validation failed
Signature: __init__(self, message: str, decorator_name: Optional[str] = None)
Parameters:
message
:str
decorator_name
:Optional
(default:None
)