core¶
Core components of the prompt decorators system.
This package contains the core components and functionality that power the prompt decorators system, including the base decorator classes, validation logic, request handling, and model-specific adaptations.
Public API¶
This module exports the following components:
DecoratorBase
: Class - Base class for all prompt decoratorsBaseDecorator
: Class - Base class for all prompt decoratorsDecoratorParameter
: Class - Represents a parameter for a decoratorParameter
: Class - Represents a parameter for a decoratorValidationError
: Class - Exception raised when decorator validation failsParameterType
: Class - Types of parameters supported in decoratorsDecoratorParser
: Class - Parser for extracting decorator annotations from promptsDecoratorRegistry
: Class - Registry class for managing prompt decorators
Classes¶
BaseDecorator
¶
Imported from prompt_decorators.core.base
Base class for all prompt decorators.
This class defines the common interface and behavior for all decorators. Subclasses should implement the apply_to_prompt and transform_response methods.
Attributes¶
conflicts_with
:set
=set()
description
:str
='Base decorator class'
from_dict
:classmethod
=<classmethod(<function DecoratorBase.from_dict at 0x105acf4c0>)>
name
:str
='DecoratorBase'
parameters
:dict
={}
transformation_template
:dict
={'instruction': '', 'parameterMapping': {}, 'placement': 'prepend', 'compositionBehavior': 'accumulate'}
Methods¶
__init__
¶
Initialize a decorator with parameter values.
Args: **kwargs: Parameter values for the decorator
Raises: ValidationError: If any parameter values are invalid
Signature: __init__(self, **kwargs)
Parameters:
kwargs
:
apply_to_prompt
¶
Apply the decorator to a prompt.
This method uses the transformation_template to transform the prompt according to the decorator's intended behavior.
Args: prompt: The prompt to decorate
Returns: The decorated prompt
Signature: apply_to_prompt(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
transform_response
¶
Transform the LLM response according to the decorator's behavior.
The base implementation returns the response unchanged. Subclasses should override this method if they need to modify the response.
Args: response: The LLM response to transform
Returns: The transformed response
Signature: transform_response(self, response: str) -> str
Parameters:
response
:str
Returns: str
DecoratorBase
¶
Imported from prompt_decorators.core.base
Base class for all prompt decorators.
This class defines the common interface and behavior for all decorators. Subclasses should implement the apply_to_prompt and transform_response methods.
Attributes¶
conflicts_with
:set
=set()
description
:str
='Base decorator class'
from_dict
:classmethod
=<classmethod(<function DecoratorBase.from_dict at 0x105acf4c0>)>
name
:str
='DecoratorBase'
parameters
:dict
={}
transformation_template
:dict
={'instruction': '', 'parameterMapping': {}, 'placement': 'prepend', 'compositionBehavior': 'accumulate'}
Methods¶
__init__
¶
Initialize a decorator with parameter values.
Args: **kwargs: Parameter values for the decorator
Raises: ValidationError: If any parameter values are invalid
Signature: __init__(self, **kwargs)
Parameters:
kwargs
:
apply_to_prompt
¶
Apply the decorator to a prompt.
This method uses the transformation_template to transform the prompt according to the decorator's intended behavior.
Args: prompt: The prompt to decorate
Returns: The decorated prompt
Signature: apply_to_prompt(self, prompt: str) -> str
Parameters:
prompt
:str
Returns: str
transform_response
¶
Transform the LLM response according to the decorator's behavior.
The base implementation returns the response unchanged. Subclasses should override this method if they need to modify the response.
Args: response: The LLM response to transform
Returns: The transformed response
Signature: transform_response(self, response: str) -> str
Parameters:
response
:str
Returns: str
DecoratorParameter
¶
Imported from prompt_decorators.core.base
Represents a parameter for a decorator.
This class is used by dynamic decorators to define parameters and validate values.
Attributes¶
from_dict
:classmethod
=<classmethod(<function DecoratorParameter.from_dict at 0x105acf380>)>
Methods¶
__init__
¶
Initialize a decorator parameter.
Args: name: The name of the parameter description: A description of the parameter type_: The type of the parameter (string, integer, float, boolean, enum) required: Whether the parameter is required default: Default value for the parameter enum_values: Possible values for enum type min_value: Minimum value for numeric types max_value: Maximum value for numeric types min_length: Minimum length for string or array types max_length: Maximum length for string or array types pattern: Regex pattern for string validation
Signature: __init__(self, name: str, description: str, type_: str = 'string', required: bool = False, default: Any = None, enum_values: Optional[List[str]] = None, min_value: Union[int, float, NoneType] = None, max_value: Union[int, float, NoneType] = None, min_length: Optional[int] = None, max_length: Optional[int] = None, pattern: Optional[str] = None)
Parameters:
name
:str
description
:str
type_
:str
(default:string
)required
:bool
(default:False
)default
:Any
(default:None
)enum_values
:Optional
(default:None
)min_value
:Union
(default:None
)max_value
:Union
(default:None
)min_length
:Optional
(default:None
)max_length
:Optional
(default:None
)pattern
:Optional
(default:None
)
to_dict
¶
Convert the parameter to a dictionary representation.
Signature: to_dict(self) -> Dict[str, Any]
Parameters:
Returns: Dict
validate
¶
Validate a parameter value against constraints.
Args: value: The value to validate
Returns: The validated value (possibly converted to the correct type)
Raises: ValidationError: If the value is invalid
Signature: validate(self, value: Any) -> Any
Parameters:
value
:Any
Returns: Any
DecoratorParser
¶
Imported from prompt_decorators.core.parser
Parser for extracting decorator annotations from prompts.
This class handles the parsing of decorator annotations in the format: +++DecoratorName(param1=value1, param2=value2)
Attributes¶
DECORATOR_PATTERN
:str
='\\+\\+\\+([A-Za-z0-9_]+)(?:\\(([^)]*)\\))?'
Methods¶
__init__
¶
Initialize the decorator parser.
Args: registry: Optional decorator registry to use for creating decorators. If not provided, the global registry will be used.
Signature: __init__(self, registry: Optional[prompt_decorators.core.registry.DecoratorRegistry] = None)
Parameters:
registry
:Optional
(default:None
)
extract_decorators
¶
Extract decorator annotations from a prompt.
This method extracts all decorator annotations from the prompt text, creates decorator instances for each annotation, and returns both the list of decorators and the cleaned prompt text.
Args: prompt: The prompt text to parse
Returns: A tuple containing: - A list of decorator instances - The prompt text with decorator annotations removed
Signature: extract_decorators(self, prompt: str) -> Tuple[List[prompt_decorators.core.base.DecoratorBase], str]
Parameters:
prompt
:str
Returns: Tuple
DecoratorRegistry
¶
Imported from prompt_decorators.core.registry
Registry class for managing prompt decorators.
This class provides an object-oriented interface to the decorator registry, allowing for easier management and access to registered decorators.
Attributes¶
categories
:property
=<property object at 0x105ac72e0>
decorators
:property
=<property object at 0x105ac7100>
Methods¶
__init__
¶
Initialize the decorator registry.
Signature: __init__(self) -> None
Parameters:
clear
¶
Clear the registry.
Signature: clear(self) -> None
Parameters:
get_by_category
¶
Get all decorators in a category.
Args: category: The category to get decorators for
Returns: List of decorator classes in the category
Signature: get_by_category(self, category: str) -> List[Type[prompt_decorators.core.base.DecoratorBase]]
Parameters:
category
:str
Returns: List
get_decorator
¶
Get a decorator class by name.
Args: name: The name of the decorator to get
Returns: The decorator class, or None if not found
Signature: get_decorator(self, name: str) -> Optional[Type[prompt_decorators.core.base.DecoratorBase]]
Parameters:
name
:str
Returns: Optional
register
¶
Register a decorator class.
Args: decorator_class: The decorator class to register category: The category to register the decorator under
Returns: None
Signature: register(self, decorator_class: Type[prompt_decorators.core.base.DecoratorBase], category: str = 'unknown') -> None
Parameters:
decorator_class
:Type
category
:str
(default:unknown
)
Parameter
¶
Imported from prompt_decorators.core.base
Represents a parameter for a decorator.
This class defines the metadata for a parameter, including its name, type, description, default value, and constraints.
Bases: pydantic.main.BaseModel
Attributes¶
model_config
:dict
={}
Methods¶
__init__
¶
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError
if the input data cannot be validated to form a valid model.
self
is explicitly positional-only to allow self
as a field name.
Signature: __init__(self, /, **data: 'Any') -> 'None'
Parameters:
data
:Any
Returns: None
copy
¶
Returns a copy of the model.
Deprecated
This method is now deprecated; use model_copy
instead.
If you need include
or exclude
, use:
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.
Returns: A copy of the model with included, excluded and updated fields as specified.
Signature: copy(self, *, include: 'AbstractSetIntStr | MappingIntStrAny | None' = None, exclude: 'AbstractSetIntStr | MappingIntStrAny | None' = None, update: 'Dict[str, Any] | None' = None, deep: 'bool' = False) -> 'Self'
Parameters:
include
:AbstractSetIntStr | MappingIntStrAny | None
(default:None
)exclude
:AbstractSetIntStr | MappingIntStrAny | None
(default:None
)update
:Dict[str, Any] | None
(default:None
)deep
:bool
(default:False
)
Returns: Self
dict
¶
Signature: dict(self, *, include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False) -> 'Dict[str, Any]'
Parameters:
include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)
Returns: Dict[str, Any]
json
¶
Signature: json(self, *, include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False, encoder: 'Callable[[Any], Any] | None' = PydanticUndefined, models_as_dict: 'bool' = PydanticUndefined, **dumps_kwargs: 'Any') -> 'str'
Parameters:
include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)encoder
:Callable[[Any], Any] | None
(default:PydanticUndefined
)models_as_dict
:bool
(default:PydanticUndefined
)dumps_kwargs
:Any
Returns: str
model_copy
¶
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
Args: update: Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. deep: Set to True
to make a deep copy of the model.
Returns: New model instance.
Signature: model_copy(self, *, update: 'Mapping[str, Any] | None' = None, deep: 'bool' = False) -> 'Self'
Parameters:
update
:Mapping[str, Any] | None
(default:None
)deep
:bool
(default:False
)
Returns: Self
model_dump
¶
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args: mode: The mode in which to_python
should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field's alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None
. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a PydanticSerializationError
. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A dictionary representation of the model.
Signature: model_dump(self, *, mode: "Literal['json', 'python'] | str" = 'python', include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, context: 'Any | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False, round_trip: 'bool' = False, warnings: "bool | Literal['none', 'warn', 'error']" = True, serialize_as_any: 'bool' = False) -> 'dict[str, Any]'
Parameters:
mode
:Literal['json', 'python'] | str
(default:python
)include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)context
:Any | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)round_trip
:bool
(default:False
)warnings
:bool | Literal['none', 'warn', 'error']
(default:True
)serialize_as_any
:bool
(default:False
)
Returns: dict[str, Any]
model_dump_json
¶
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic's to_json
method.
Args: indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None
. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, "error" raises a PydanticSerializationError
. serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns: A JSON string representation of the model.
Signature: model_dump_json(self, *, indent: 'int | None' = None, include: 'IncEx | None' = None, exclude: 'IncEx | None' = None, context: 'Any | None' = None, by_alias: 'bool' = False, exclude_unset: 'bool' = False, exclude_defaults: 'bool' = False, exclude_none: 'bool' = False, round_trip: 'bool' = False, warnings: "bool | Literal['none', 'warn', 'error']" = True, serialize_as_any: 'bool' = False) -> 'str'
Parameters:
indent
:int | None
(default:None
)include
:IncEx | None
(default:None
)exclude
:IncEx | None
(default:None
)context
:Any | None
(default:None
)by_alias
:bool
(default:False
)exclude_unset
:bool
(default:False
)exclude_defaults
:bool
(default:False
)exclude_none
:bool
(default:False
)round_trip
:bool
(default:False
)warnings
:bool | Literal['none', 'warn', 'error']
(default:True
)serialize_as_any
:bool
(default:False
)
Returns: str
model_post_init
¶
Override this method to perform additional initialization after __init__
and model_construct
. This is useful if you want to do some validation that requires the entire model to be initialized.
Signature: model_post_init(self, _BaseModel__context: 'Any') -> 'None'
Parameters:
_BaseModel__context
:Any
Returns: None
validate_value
¶
Validate a parameter value against the parameter's constraints.
Args: value: The value to validate
Returns: The validated value (possibly converted to the correct type)
Raises: ValidationError: If the value is invalid
Signature: validate_value(self, value: Any) -> Any
Parameters:
value
:Any
Returns: Any
ParameterType
¶
Imported from prompt_decorators.core.base
Types of parameters supported in decorators.
Bases: builtins.str
, enum.Enum
Attributes¶
ARRAY
:ParameterType
=<ParameterType.ARRAY: 'array'>
BOOLEAN
:ParameterType
=<ParameterType.BOOLEAN: 'boolean'>
ENUM
:ParameterType
=<ParameterType.ENUM: 'enum'>
FLOAT
:ParameterType
=<ParameterType.FLOAT: 'float'>
INTEGER
:ParameterType
=<ParameterType.INTEGER: 'integer'>
OBJECT
:ParameterType
=<ParameterType.OBJECT: 'object'>
STRING
:ParameterType
=<ParameterType.STRING: 'string'>
Methods¶
__init__
¶
Signature: __init__(self, *args, **kwds)
Parameters:
args
:kwds
:
ValidationError
¶
Imported from prompt_decorators.core.base
Exception raised when decorator validation fails.
Bases: builtins.Exception
Methods¶
__init__
¶
Initialize ValidationError.
Args: message: The error message decorator_name: Optional name of the decorator where validation failed
Signature: __init__(self, message: str, decorator_name: Optional[str] = None)
Parameters:
message
:str
decorator_name
:Optional
(default:None
)